Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596. https://doi.org/10.1038/nm.3407
Article PubMed CAS Google Scholar
Rihani SBA, Batarseh YS, Kaddoumi A (2023) The blood–brain barrier in Health and Disease. Int J Mol Sci 24:9261. https://doi.org/10.3390/ijms24119261
Erdő F, Denes L, De Lange E (2017) Age-associated physiological and pathological changes at the blood–brain barrier: a review. J Cereb Blood Flow Metab 37:4–24. https://doi.org/10.1177/0271678X16679420
Abbott NJ (2013) Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inher Metab Disea 36:437–449. https://doi.org/10.1007/s10545-013-9608-0
Carl SM, Lindley DJ, Couraud PO, Weksler BB, Romero I, Mowery SA, Knipp GT (2010) ABC and SLC Transporter expression and Pot substrate characterization across the human CMEC/D3 blood– brain barrier cell line. Mol Pharm 7:1057–1068. https://doi.org/10.1021/mp900178j
Article PubMed CAS Google Scholar
Manu DR, Slevin M, Barcutean L, Forro T, Boghitoiu T, Balasa R (2023) Astrocyte involvement in blood-brain barrier function: a critical update highlighting Novel, Complex, neurovascular interactions. Int J Mol Sci 24:17146. https://doi.org/10.3390/ijms242417146
Article PubMed CAS Google Scholar
Liu D, Liao P, Li H, Tong S, Wang B, Lu Y, Gao Y, Huang Y, Zhou H, Shi L, Papadimitriou J, Zong Y, Yuan J, Chen P, Chen Z, Ding P, Zheng Y, Zhang C, Zheng M, Gao J (2024) Regulation of blood-brain barrier integrity by Dmp1 -expressing astrocytes through mitochondrial transfer. Sci Adv 10:eadk2913. https://doi.org/10.1126/sciadv.adk2913
Article PubMed PubMed Central CAS Google Scholar
Verkhratsky A, Pivoriūnas A (2023) Astroglia support, regulate and reinforce brain barriers. Neurobiol Dis 179:106054. https://doi.org/10.1016/j.nbd.2023.106054
Article PubMed CAS Google Scholar
Phatnani H, Maniatis T (2015) Astrocytes in neurodegenerative disease. Cold Spring Harb Perspect Biol 7:a020628. https://doi.org/10.1101/cshperspect.a020628
Artiushin G, Li F, Sehgal A (2022) Modulation of sleep by trafficking of lipids through the Drosophila blood brain barrier. https://doi.org/10.1101/2022.02.17.480875
Shu S (2023) Heterochromatic silencing of Immune-related genes in glia is required for BBB Integrity and normal lifespan in drosophila. Aging Cell 22. https://doi.org/10.1111/acel.13947
DeSalvo MK, Hindle SJ, Rusan ZM, Orng S, Eddison M, Halliwill K, Bainton RJ (2014) The Drosophila Surface Glia Transcriptome: Evolutionary conserved blood-brain barrier processes. Front NeuroSci 8. https://doi.org/10.3389/fnins.2014.00346
Schmidt I, Thomas S, Kain P, Risse B, Naffin E, Klämbt C (2012) Kinesin heavy chain function InDrosophilaGlial cells controls neuronal activity. J Neurosci 32:7466–7476. https://doi.org/10.1523/jneurosci.0349-12.2012
Article PubMed CAS Google Scholar
Kremer MC, Jung C, Batelli S, Rubin GM, Gaul U (2017) The glia of the adult Drosophila Nervous System. Glia 65:606–638. https://doi.org/10.1002/glia.23115
Sehgal A, Li F, Artiushin G (2023) Modulation of sleep by trafficking of lipids through the Drosophila blood-brain barrier. Elife 12. https://doi.org/10.7554/elife.86336
Yang H, Luo Y, Hu H, Yang S, Li Y, Jin H, Chen S, He Q, Hong C, Wu J, Li M, Li Z, Yang X, Su Y, Zhou Y, Hu B (2021) pH-Sensitive, cerebral vasculature‐targeting hydroxyethyl starch functionalized nanoparticles for Improved Angiogenesis and neurological function recovery in ischemic stroke. Adv Healthc Mater 10. https://doi.org/10.1002/adhm.202100028
Zhang W, Li W, Li J, Chang X, Niu S, Wu T, Kong L, Zhang T, Tang M, Xue Y (2021) Neurobehavior and neuron damage following prolonged exposure of silver nanoparticles with/without polyvinylpyrrolidone coating in Caenorhabditis elegans. J Appl Toxicol 41:2055–2067. https://doi.org/10.1002/jat.4197
Article PubMed CAS Google Scholar
Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH (2021) Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges. Adv Sci 8. https://doi.org/10.1002/advs.202003937
Wang G (2024) Advances in Engineered nanoparticles for the treatment of ischemic stroke by enhancing angiogenesis. Int J Nanomed Volume 19:4377–4409. https://doi.org/10.2147/ijn.s463333
Thokchom B, Bhavi SM, Abbigeri MB, Shettar AK, Yarajarla RB (2023) Green synthesis, characterization and biomedical applications of Centella asiatica-derived carbon dots. Carbon Lett 33:1057–1071. https://doi.org/10.1007/s42823-023-00505-3
Hussen NH (2024) Carbon dot based Carbon nanoparticles as Potent Antimicrobial, Antiviral, and Anticancer agents. Acs Omega 9:9849–9864. https://doi.org/10.1021/acsomega.3c05537
Article PubMed PubMed Central CAS Google Scholar
Liu J, Li R, Yang B (2020) Carbon dots: a New type of Carbon-based nanomaterial with wide applications. Acs Cent Sci 6:2179–2195. https://doi.org/10.1021/acscentsci.0c01306
Article PubMed PubMed Central CAS Google Scholar
Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: an update. Bioeng Translational Med 4. https://doi.org/10.1002/btm2.10143
Gong P, Li M, Zou C, Tian Q, Zhou X (2018) Tissue plasminogen activator causes brain microvascular endothelial cell Injury after Oxygen glucose deprivation by inhibiting sonic hedgehog signaling. Neurochem Res 44:441–449. https://doi.org/10.1007/s11064-018-2697-2
Article PubMed PubMed Central CAS Google Scholar
Varga B, Fazakas C, Molnár J, Wilhelm I, Domokos RA, Krizbai IA, Szegletes Z, Váró G, Végh AG (2016) Direct mapping of Melanoma Cell - endothelial cell interactions. J Mol Recognit 30. https://doi.org/10.1002/jmr.2603
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI (2018) Blood-Brain Delivery Methods Using Nanatechnol Pharm 10:269. https://doi.org/10.3390/pharmaceutics10040269
Wilhelm I, Fazakas C, Molnár J, Haskó J, Végh AG, Cervenak L, Nagyőszi P, Nyúl-Tóth Á, Farkas A, Bauer H, Guillemin GJ, Bauer H-C, Váró G, Krizbai IA (2013) Role of Rho/ROCKsignaling in the Interaction of Melanoma cells with the blood–brain barrier. Pigment Cell Melanoma Res 27:113–123. https://doi.org/10.1111/pcmr.12169
Article PubMed CAS Google Scholar
Yamazaki T, Mukouyama Y (2018) Tissue specific origin, Development, and pathological perspectives of Pericytes. Front Cardiovasc Med 5. https://doi.org/10.3389/fcvm.2018.00078
Kadry H, Noorani B, Cucullo L (2020) A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17:69. https://doi.org/10.1186/s12987-020-00230-3
Article PubMed PubMed Central Google Scholar
Dieriks B, Highet B, Alik A, Bellande T, Stevenson TJ, Low VF, Park TI, Correia J, Schweder P, Faull RLM, Melki R, Curtis MA, Dragunow M (2022) Human pericytes degrade Α-Synuclein aggregates in a strain-dependent manner. https://doi.org/10.1101/2022.06.08.495286
Alcendor DJ, Pericytes HV, Pathobiology C (2019) Int J Mol Sci 20:1456. https://doi.org/10.3390/ijms20061456
Article PubMed CAS Google Scholar
Rustenhoven J, Scotter EL, Jansson D, Kho DT, Oldfield R, Bergin P, Mee E, Faull RL, Curtis MA, Graham SE, Park TI (2015) Dragunow, an anti-inflammatory role for C/EBPδ in human brain pericytes. Sci Rep 5. https://doi.org/10.1038/srep12132
Hartmann DA, Berthiaume A-A, Grant RI, Harrill SA, Koski T, Tieu T, McDowell K, Faino A, Kelly A, Shih AY (2021) Brain Capillary Pericytes exert a substantial but slow influence on Blood Flow. Nat Neurosci 24:633–645. https://doi.org/10.1038/s41593-020-00793-2
Article PubMed CAS Google Scholar
Lee H-G, Rone JM, Li Z, Akl CF, Shin SW, Lee J-H, Flausino LE, Pernin F, Chao C-C, Kleemann KL, Srun L, Illouz T, Giovannoni F, Charabati M, Sanmarco LM, Kenison JE, Piester G, Zandee SEJ, Antel JP, Rothhammer V, Wheeler MA, Prat A, Clark IC, Quintana FJ (2024) Disease-associated astrocyte epigenetic memory promotes CNS pathology. Nature 627:865–872. https://doi.org/10.1038/s41586-024-07187-5
Article PubMed CAS Google Scholar
Ayer M, Schuster M, Gruber I, Blatti C, Kaba E, Enzmann G, Burri O, Guiet R, Seitz A, Engelhardt B, Klok H (2020) T cell-mediated transport of Polymer nanoparticles across the blood–brain barrier. Adv Healthc Mater 10. https://doi.org/10.1002/adhm.202001375
Papademetriou IT, Vedula EM, Charest JL, Porter TM (2018) Effect of Flow on Targeting and Penetration of Angiopep-decorated nanoparticles in a microfluidic model blood-brain barrier. PLoS ONE 13:e0205158. https://doi.org/10.1371/journal.pone.0205158
Article PubMed CAS Google Scholar
Bukeirat M, Sarkar S, Hu H, Quintana DD, Simpkins JW, Ren X (2015) MiR-34a regulates blood–brain barrier permeability and mitochondrial function by targeting cytochrome C. J Cereb Blood Flow Metabolism 36:387–392. https://doi.org/10.1177/0271678x15606147
Thom G, Hatcher JP, Hearn A, Paterson J, Rodrigo N, Beljean A, Gurrell I, Webster C (2017) Isolation of blood-brain barrier-crossing antibodies from a phage Display Library by competitive elution and their ability to penetrate the Central Nervous System. Mabs 10:304–314.
Comments (0)