Nanoparticle Interactions with the Blood Brain Barrier: Insights from Drosophila and Implications for Human Astrocyte Targeted Therapies

Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596. https://doi.org/10.1038/nm.3407

Article  PubMed  CAS  Google Scholar 

Rihani SBA, Batarseh YS, Kaddoumi A (2023) The blood–brain barrier in Health and Disease. Int J Mol Sci 24:9261. https://doi.org/10.3390/ijms24119261

Article  PubMed  Google Scholar 

Erdő F, Denes L, De Lange E (2017) Age-associated physiological and pathological changes at the blood–brain barrier: a review. J Cereb Blood Flow Metab 37:4–24. https://doi.org/10.1177/0271678X16679420

Article  PubMed  Google Scholar 

Abbott NJ (2013) Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inher Metab Disea 36:437–449. https://doi.org/10.1007/s10545-013-9608-0

Article  CAS  Google Scholar 

Carl SM, Lindley DJ, Couraud PO, Weksler BB, Romero I, Mowery SA, Knipp GT (2010) ABC and SLC Transporter expression and Pot substrate characterization across the human CMEC/D3 blood– brain barrier cell line. Mol Pharm 7:1057–1068. https://doi.org/10.1021/mp900178j

Article  PubMed  CAS  Google Scholar 

Manu DR, Slevin M, Barcutean L, Forro T, Boghitoiu T, Balasa R (2023) Astrocyte involvement in blood-brain barrier function: a critical update highlighting Novel, Complex, neurovascular interactions. Int J Mol Sci 24:17146. https://doi.org/10.3390/ijms242417146

Article  PubMed  CAS  Google Scholar 

Liu D, Liao P, Li H, Tong S, Wang B, Lu Y, Gao Y, Huang Y, Zhou H, Shi L, Papadimitriou J, Zong Y, Yuan J, Chen P, Chen Z, Ding P, Zheng Y, Zhang C, Zheng M, Gao J (2024) Regulation of blood-brain barrier integrity by Dmp1 -expressing astrocytes through mitochondrial transfer. Sci Adv 10:eadk2913. https://doi.org/10.1126/sciadv.adk2913

Article  PubMed  PubMed Central  CAS  Google Scholar 

Verkhratsky A, Pivoriūnas A (2023) Astroglia support, regulate and reinforce brain barriers. Neurobiol Dis 179:106054. https://doi.org/10.1016/j.nbd.2023.106054

Article  PubMed  CAS  Google Scholar 

Phatnani H, Maniatis T (2015) Astrocytes in neurodegenerative disease. Cold Spring Harb Perspect Biol 7:a020628. https://doi.org/10.1101/cshperspect.a020628

Article  PubMed  Google Scholar 

Artiushin G, Li F, Sehgal A (2022) Modulation of sleep by trafficking of lipids through the Drosophila blood brain barrier. https://doi.org/10.1101/2022.02.17.480875

Shu S (2023) Heterochromatic silencing of Immune-related genes in glia is required for BBB Integrity and normal lifespan in drosophila. Aging Cell 22. https://doi.org/10.1111/acel.13947

DeSalvo MK, Hindle SJ, Rusan ZM, Orng S, Eddison M, Halliwill K, Bainton RJ (2014) The Drosophila Surface Glia Transcriptome: Evolutionary conserved blood-brain barrier processes. Front NeuroSci 8. https://doi.org/10.3389/fnins.2014.00346

Schmidt I, Thomas S, Kain P, Risse B, Naffin E, Klämbt C (2012) Kinesin heavy chain function InDrosophilaGlial cells controls neuronal activity. J Neurosci 32:7466–7476. https://doi.org/10.1523/jneurosci.0349-12.2012

Article  PubMed  CAS  Google Scholar 

Kremer MC, Jung C, Batelli S, Rubin GM, Gaul U (2017) The glia of the adult Drosophila Nervous System. Glia 65:606–638. https://doi.org/10.1002/glia.23115

Article  PubMed  Google Scholar 

Sehgal A, Li F, Artiushin G (2023) Modulation of sleep by trafficking of lipids through the Drosophila blood-brain barrier. Elife 12. https://doi.org/10.7554/elife.86336

Yang H, Luo Y, Hu H, Yang S, Li Y, Jin H, Chen S, He Q, Hong C, Wu J, Li M, Li Z, Yang X, Su Y, Zhou Y, Hu B (2021) pH-Sensitive, cerebral vasculature‐targeting hydroxyethyl starch functionalized nanoparticles for Improved Angiogenesis and neurological function recovery in ischemic stroke. Adv Healthc Mater 10. https://doi.org/10.1002/adhm.202100028

Zhang W, Li W, Li J, Chang X, Niu S, Wu T, Kong L, Zhang T, Tang M, Xue Y (2021) Neurobehavior and neuron damage following prolonged exposure of silver nanoparticles with/without polyvinylpyrrolidone coating in Caenorhabditis elegans. J Appl Toxicol 41:2055–2067. https://doi.org/10.1002/jat.4197

Article  PubMed  CAS  Google Scholar 

Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH (2021) Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges. Adv Sci 8. https://doi.org/10.1002/advs.202003937

Wang G (2024) Advances in Engineered nanoparticles for the treatment of ischemic stroke by enhancing angiogenesis. Int J Nanomed Volume 19:4377–4409. https://doi.org/10.2147/ijn.s463333

Article  Google Scholar 

Thokchom B, Bhavi SM, Abbigeri MB, Shettar AK, Yarajarla RB (2023) Green synthesis, characterization and biomedical applications of Centella asiatica-derived carbon dots. Carbon Lett 33:1057–1071. https://doi.org/10.1007/s42823-023-00505-3

Article  CAS  Google Scholar 

Hussen NH (2024) Carbon dot based Carbon nanoparticles as Potent Antimicrobial, Antiviral, and Anticancer agents. Acs Omega 9:9849–9864. https://doi.org/10.1021/acsomega.3c05537

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu J, Li R, Yang B (2020) Carbon dots: a New type of Carbon-based nanomaterial with wide applications. Acs Cent Sci 6:2179–2195. https://doi.org/10.1021/acscentsci.0c01306

Article  PubMed  PubMed Central  CAS  Google Scholar 

Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: an update. Bioeng Translational Med 4. https://doi.org/10.1002/btm2.10143

Gong P, Li M, Zou C, Tian Q, Zhou X (2018) Tissue plasminogen activator causes brain microvascular endothelial cell Injury after Oxygen glucose deprivation by inhibiting sonic hedgehog signaling. Neurochem Res 44:441–449. https://doi.org/10.1007/s11064-018-2697-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Varga B, Fazakas C, Molnár J, Wilhelm I, Domokos RA, Krizbai IA, Szegletes Z, Váró G, Végh AG (2016) Direct mapping of Melanoma Cell - endothelial cell interactions. J Mol Recognit 30. https://doi.org/10.1002/jmr.2603

Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI (2018) Blood-Brain Delivery Methods Using Nanatechnol Pharm 10:269. https://doi.org/10.3390/pharmaceutics10040269

Article  CAS  Google Scholar 

Wilhelm I, Fazakas C, Molnár J, Haskó J, Végh AG, Cervenak L, Nagyőszi P, Nyúl-Tóth Á, Farkas A, Bauer H, Guillemin GJ, Bauer H-C, Váró G, Krizbai IA (2013) Role of Rho/ROCKsignaling in the Interaction of Melanoma cells with the blood–brain barrier. Pigment Cell Melanoma Res 27:113–123. https://doi.org/10.1111/pcmr.12169

Article  PubMed  CAS  Google Scholar 

Yamazaki T, Mukouyama Y (2018) Tissue specific origin, Development, and pathological perspectives of Pericytes. Front Cardiovasc Med 5. https://doi.org/10.3389/fcvm.2018.00078

Kadry H, Noorani B, Cucullo L (2020) A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17:69. https://doi.org/10.1186/s12987-020-00230-3

Article  PubMed  PubMed Central  Google Scholar 

Dieriks B, Highet B, Alik A, Bellande T, Stevenson TJ, Low VF, Park TI, Correia J, Schweder P, Faull RLM, Melki R, Curtis MA, Dragunow M (2022) Human pericytes degrade Α-Synuclein aggregates in a strain-dependent manner. https://doi.org/10.1101/2022.06.08.495286

Alcendor DJ, Pericytes HV, Pathobiology C (2019) Int J Mol Sci 20:1456. https://doi.org/10.3390/ijms20061456

Article  PubMed  CAS  Google Scholar 

Rustenhoven J, Scotter EL, Jansson D, Kho DT, Oldfield R, Bergin P, Mee E, Faull RL, Curtis MA, Graham SE, Park TI (2015) Dragunow, an anti-inflammatory role for C/EBPδ in human brain pericytes. Sci Rep 5. https://doi.org/10.1038/srep12132

Hartmann DA, Berthiaume A-A, Grant RI, Harrill SA, Koski T, Tieu T, McDowell K, Faino A, Kelly A, Shih AY (2021) Brain Capillary Pericytes exert a substantial but slow influence on Blood Flow. Nat Neurosci 24:633–645. https://doi.org/10.1038/s41593-020-00793-2

Article  PubMed  CAS  Google Scholar 

Lee H-G, Rone JM, Li Z, Akl CF, Shin SW, Lee J-H, Flausino LE, Pernin F, Chao C-C, Kleemann KL, Srun L, Illouz T, Giovannoni F, Charabati M, Sanmarco LM, Kenison JE, Piester G, Zandee SEJ, Antel JP, Rothhammer V, Wheeler MA, Prat A, Clark IC, Quintana FJ (2024) Disease-associated astrocyte epigenetic memory promotes CNS pathology. Nature 627:865–872. https://doi.org/10.1038/s41586-024-07187-5

Article  PubMed  CAS  Google Scholar 

Ayer M, Schuster M, Gruber I, Blatti C, Kaba E, Enzmann G, Burri O, Guiet R, Seitz A, Engelhardt B, Klok H (2020) T cell-mediated transport of Polymer nanoparticles across the blood–brain barrier. Adv Healthc Mater 10. https://doi.org/10.1002/adhm.202001375

Papademetriou IT, Vedula EM, Charest JL, Porter TM (2018) Effect of Flow on Targeting and Penetration of Angiopep-decorated nanoparticles in a microfluidic model blood-brain barrier. PLoS ONE 13:e0205158. https://doi.org/10.1371/journal.pone.0205158

Article  PubMed  CAS  Google Scholar 

Bukeirat M, Sarkar S, Hu H, Quintana DD, Simpkins JW, Ren X (2015) MiR-34a regulates blood–brain barrier permeability and mitochondrial function by targeting cytochrome C. J Cereb Blood Flow Metabolism 36:387–392. https://doi.org/10.1177/0271678x15606147

Article  Google Scholar 

Thom G, Hatcher JP, Hearn A, Paterson J, Rodrigo N, Beljean A, Gurrell I, Webster C (2017) Isolation of blood-brain barrier-crossing antibodies from a phage Display Library by competitive elution and their ability to penetrate the Central Nervous System. Mabs 10:304–314.

Comments (0)

No login
gif