Barichello T, Simoes LR, Quevedo J, Zhang XY (2020) Microglial activation and psychotic disorders: evidence from pre-clinical and clinical studies. Curr Top Behav Neurosci 44:161–205. https://doi.org/10.1007/7854_2018_81
Article CAS PubMed Google Scholar
Parellada E, Gassó P (2021) Glutamate and microglia activation as a driver of dendritic apoptosis: a core pathophysiological mechanism to understand schizophrenia. Transl Psychiatry 11(1):271. https://doi.org/10.1038/s41398-021-01385-9
Article CAS PubMed PubMed Central Google Scholar
Hartmann SM, Heider J, Wüst R, Fallgatter AJ, Volkmer H (2024) Microglia-neuron interactions in schizophrenia. Front Cell Neurosci 18:1345349. https://doi.org/10.3389/fncel.2024.1345349
Article PubMed PubMed Central Google Scholar
Mastenbroek LJM, Kooistra SM, Eggen BJL, Prins JR (2024) The role of microglia in early neurodevelopment and the effects of maternal immune activation. Semin Immunopathol. https://doi.org/10.1007/s00281-024-01017-6
Article PubMed PubMed Central Google Scholar
Logiacco F, Xia P, Georgiev SV, Franconi C, Chang YJ, Ugursu B, Sporbert A, Kühn R, Kettenmann H, Semtner M (2021) Microglia sense neuronal activity via GABA in the early postnatal hippocampus. Cell Rep 37(13):110128. https://doi.org/10.1016/j.celrep.2021.110128
Article CAS PubMed Google Scholar
Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, Ikegami A, Hwang P, Chan AT, Graves SM, Uweru JO, Ledderose C, Kutlu MG, Wheeler MA, Kahan A, Ishikawa M, Wang YC, Loh YE, Jiang JX, Surmeier DJ, Robson SC, Junger WG, Sebra R, Calipari ES, Kenny PJ, Eyo UB, Colonna M, Quintana FJ, Wake H, Gradinaru V, Schaefer A (2020) Negative feedback control of neuronal activity by microglia. Nature 586(7829):417–423. https://doi.org/10.1038/s41586-020-2777-8
Article CAS PubMed PubMed Central Google Scholar
Tian L, Hui CW, Bisht K, Tan Y, Sharma K, Chen S, Zhang X, Tremblay ME (2017) Microglia under psychosocial stressors along the aging trajectory: Consequences on neuronal circuits, behavior, and brain diseases. Prog Neuropsychopharmacol Biol Psychiatry 79(Pt A):27–39. https://doi.org/10.1016/j.pnpbp.2017.01.007
Cserép C, Pósfai B, Dénes Á (2021) Shaping neuronal fate: functional heterogeneity of direct microglia-neuron interactions. Neuron 109(2):222–240. https://doi.org/10.1016/j.neuron.2020.11.007
Article CAS PubMed Google Scholar
Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, Lele Z, Orsolits B, Molnár G, Heindl S, Schwarcz AD, Ujvári K, Környei Z, Tóth K, Szabadits E, Sperlágh B, Baranyi M, Csiba L, Hortobágyi T, Maglóczky Z, Martinecz B, Szabó G, Erdélyi F, Szipőcs R, Tamkun MM, Gesierich B, Duering M, Katona I, Liesz A, Tamás G, Dénes Á (2020) Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367(6477):528–537. https://doi.org/10.1126/science.aax6752
Article CAS PubMed Google Scholar
Uranova NA, Vikhreva OV, Rakhmanova VI (2023) Microglia-neuron interactions in prefrontal gray matter in schizophrenia: a postmortem ultrastructural morphometric study. Eur Arch Psychiatry Clin Neurosci 273(8):1633–1648. https://doi.org/10.1007/s00406-023-01621-x
Article CAS PubMed Google Scholar
Jaspers E, Balsters JH, Kassraian Fard P, Mantini D, Wenderoth N (2017) Corticostriatal connectivity fingerprints: Probability maps based on resting-state functional connectivity. Hum Brain Mapp 38(3):1478–1491. https://doi.org/10.1002/hbm.23466
Duan CA, Erlich JC, Brody CD (2015) Requirement of prefrontal and midbrain regions for rapid executive control of behavior in the rat. Neuron 86(6):1491–1503. https://doi.org/10.1016/j.neuron.2015.05.042
Article CAS PubMed Google Scholar
Molina V, Lubeiro A, Soto O, Rodriguez M, Álvarez A, Hernández R, de Luis-García R (2017) Alterations in prefrontal connectivity in schizophrenia assessed using diffusion magnetic resonance imaging. Prog Neuropsychopharmacol Biol Psychiatry 76:107–115. https://doi.org/10.1016/j.pnpbp.2017.03.001
Shukla DK, Chiappelli JJ, Sampath H, Kochunov P, Hare SM, Wisner K, Rowland LM, Hong LE (2019) Aberrant frontostriatal connectivity in negative symptoms of schizophrenia. Schizophr Bull 45(5):1051–1059. https://doi.org/10.1093/schbul/sby165
Chen PJ, Fan LY, Hwang TJ, Hwu HG, Liu CM, Chou TL (2013) The deficits on a cortical-subcortical loop of meaning processing in schizophrenia. NeuroReport 24(3):147–151. https://doi.org/10.1097/WNR.0b013e32835df562
Yang KC, Yang BH, Liu MN, Liou YJ, Chou YH (2024) Cognitive impairment in schizophrenia is associated with prefrontal-striatal functional hypoconnectivity and striatal dopaminergic abnormalities. J Psychopharmacol 38(6):515–525. https://doi.org/10.1177/02698811241257877
Article CAS PubMed Google Scholar
Hinkley LBN, Haas SS, Cheung SW, Nagarajan SS, Subramaniam K (2023) Reduced neural connectivity in the caudate anterior head predicts hallucination severity in schizophrenia. Schizophr Res 261:1–5. https://doi.org/10.1016/j.schres.2023.08.030
Article PubMed PubMed Central Google Scholar
Viher PV, Docx L, Van Hecke W, Parizel PM, Sabbe B, Federspiel A, Walther S, Morrens M (2019) Aberrant fronto-striatal connectivity and fine motor function in schizophrenia. Psychiatry Res Neuroimaging 288:44–50. https://doi.org/10.1016/j.pscychresns.2019.04.010
Limongi R, Mackinley M, Dempster K, Khan AR, Gati JS, Palaniyappan L (2021) Frontal-striatal connectivity and positive symptoms of schizophrenia: implications for the mechanistic basis of prefrontal rTMS. Eur Arch Psychiatry Clin Neurosci 271(1):3–15. https://doi.org/10.1007/s00406-020-01163-6
Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N, Schmidt-Kastner R, Korr H, Steinbusch HW, Hof PR, Schmitz C (2007) Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 130(Pt 3):678–692. https://doi.org/10.1093/brain/awl386
Falke E, Han LY, Arnold SE (2000) Absence of neurodegeneration in the thalamus and caudate of elderly patients with schizophrenia. Psychiatry Res 93(2):103–110. https://doi.org/10.1016/s0165-1781(00)00104-9
Article CAS PubMed Google Scholar
Wada A, Kunii Y, Ikemoto K, Yang Q, Hino M, Matsumoto J, Niwa S (2012) Increased ratio of calcineurin immunoreactive neurons in the caudate nucleus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 37(1):8–14. https://doi.org/10.1016/j.pnpbp.2012.01.005
Article CAS PubMed Google Scholar
Adorjan I, Sun B, Feher V, Tyler T, Veres D, Chance SA, Szele FG (2020) Evidence for decreased density of calretinin-immunopositive neurons in the caudate nucleus in patients with schizophrenia. Front Neuroanat 14:581685. https://doi.org/10.3389/fnana.2020.581685
Article CAS PubMed PubMed Central Google Scholar
Roberts RC (2021) Mitochondrial dysfunction in schizophrenia: With a focus on postmortem studies. Mitochondrion 56:91–101. https://doi.org/10.1016/j.mito.2020.11.009
Article CAS PubMed Google Scholar
Kolomeets NS, Uranova NA (2024) Deficit of satellite oligodendrocytes of neurons in the rostral part of the head of the caudate nucleus in schizophrenia. Eur Arch Psychiatry Clin Neurosci. https://doi.org/10.1007/s00406-024-01869-x
Uranova NA, Vikhreva OV, Rakhmanova VI, Orlovskaya DD (2018) Ultrastructural pathology of oligodendrocytes adjacent to microglia in prefrontal white matter in schizophrenia. NPJ Schizophr 4(1):26. https://doi.org/10.1038/s41537-018-0068-2
Article CAS PubMed PubMed Central Google Scholar
Peters A, Palay SL, Webster H (1991) The fine structure of the nervous system: the neurons and supporting cells. W. B. Saunders, Philadelphia
Caruso G, Grasso M, Fidilio A, Tascedda F, Drago F, Caraci F (2020) Antioxidant properties of second-generation antipsychotics: focus on microglia. Pharmaceuticals (Basel) 13(12):457. https://doi.org/10.3390/ph13120457
Comments (0)