Immunohistochemical labeling of ongoing axonal degeneration 10 days following cervical contusion spinal cord injury in the rat

Hassannejad Z, Yousefifard M, Azizi Y, Zadegan SA, Sajadi K, Sharif-Alhoseini M, et al. Axonal degeneration and demyelination following traumatic spinal cord injury: a systematic review and meta-analysis. J Chem Neuroanat. 2019;97:9–22.

Article  CAS  PubMed  Google Scholar 

Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med. 2005;11:572–7.

Article  CAS  PubMed  Google Scholar 

Rowland JW, Hawryluk GWJ, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus. 2008;25:E2.

Article  PubMed  Google Scholar 

Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. JAMA. 1911;LVII:878.

Article  Google Scholar 

Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA. Pathophysiology and therapeutic approaches for spinal cord injury. Int J Mol Sci. 2022;23:13833.

Rajaee A, Geisen ME, Sellers AK, Stirling DP. Repeat intravital imaging of the murine spinal cord reveals degenerative and reparative responses of spinal axons in real-time following a contusive SCI. Exp Neurol. 2020;327:113258.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ward RE, Huang W, Kostusiak M, Pallier PN, Michael-Titus AT, Priestley JV. A characterization of white matter pathology following spinal cord compression injury in the rat. Neuroscience. 2014;260:227–39.

Article  CAS  PubMed  Google Scholar 

Shaw G, Madorsky I, Li Y, Wang Y, Jorgensen M, Rana S, et al. Uman-type neurofilament light antibodies are effective reagents for the imaging of neurodegeneration. Brain Commun. 2023;5:fcad067.

Article  PubMed  PubMed Central  Google Scholar 

Fehlings MG, Tator CH. The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol. 1995;132:220–8.

Article  CAS  PubMed  Google Scholar 

Yuan A, Nixon RA. Neurofilament proteins as biomarkers to monitor neurological diseases and the efficacy of therapies. Front Neurosci. 2021;15:689938.

Article  PubMed  PubMed Central  Google Scholar 

Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius Å, et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med. 2016;54:1655–61.

Article  CAS  PubMed  Google Scholar 

Sunshine MD, Bindi VE, Nguyen BL, Doerr V, Boeno FP, Chandran V, et al. Oxygen therapy attenuates neuroinflammation after spinal cord injury. J Neuroinflammation. 2023;20:303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rana S, Thakre PP, Fuller DD. Ampakines increase diaphragm activation following mid-cervical contusion injury in rats. Exp Neurol. 2024;376:114769.

Article  CAS  PubMed  Google Scholar 

Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. Elsevier Inc, Academic Press, London, England; 2007.

Schwartz ED, Cooper ET, Chin C-L, Wehrli S, Tessler A, Hackney DB. Ex vivo evaluation of ADC values within spinal cord white matter tracts. AJNR Am J Neuroradiol. 2005;26:390–7.

PubMed  PubMed Central  Google Scholar 

Marchi V, Algeri G. Sulle degenerazioni discendenti consecutive a lesioni sperimentali in diverse zone della corteccia cerebrale. Sulle degenerazioni discendenti consecutive a lesioni sperimentali in diverse zone della corteccia cerebrale. 1886;11:492–4.

Carlsen J, De Olmos J. A modified cupric-silver technique for the impregnation of degenrating neurons and their processes. Brain Res. 1981;208:426–31.

Article  CAS  PubMed  Google Scholar 

Schmued LC, Stowers CC, Scallet AC, Xu L. Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res. 2005;1035:24–31.

Article  CAS  PubMed  Google Scholar 

Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW. Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett. 1993;160:139–44.

Article  CAS  PubMed  Google Scholar 

Stone JR, Singleton RH, Povlishock JT. Antibodies to the C-terminus of the beta-amyloid precursor protein (APP): a site specific marker for the detection of traumatic axonal injury. Brain Res. 2000;871:288–302.

Article  CAS  PubMed  Google Scholar 

Strich SJ. Notes on the Marchi method for staining degenerating myelin in the peripheral and central nervous system. J Neurol Neurosurg Psychiatr. 1968;31:110–4.

Article  CAS  Google Scholar 

Yaghmai A, Povlishock J. Traumatically induced reactive change as visualized through the use of monoclonal antibodies targeted to neurofilament subunits. J Neuropathol Exp Neurol. 1992;51:158–76.

Article  CAS  PubMed  Google Scholar 

Fink RP, Heimer L. Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res. 1967;4:369–74.

Article  CAS  PubMed  Google Scholar 

de Olmos JS, Beltramino CA, de Olmos de Lorenzo S. Use of an amino-cupric-silver technique for the detection of early and semiacute neuronal degeneration caused by neurotoxicants, hypoxia, and physical trauma. Neurotoxicol Teratol. 1994;16:545–61.

Article  PubMed  Google Scholar 

Switzer RC. Application of silver degeneration stains for neurotoxicity testing. Toxicol Pathol. 2000;28:70–83.

Article  CAS  PubMed  Google Scholar 

Fix AS, Ross JF, Stitzel SR, Switzer RC. Integrated evaluation of central nervous system lesions: stains for neurons, astrocytes, and microglia reveal the spatial and temporal features of MK-801-induced neuronal necrosis in the rat cerebral cortex. Toxicol Pathol. 1996;24:291–304.

Article  CAS  PubMed  Google Scholar 

Heimer L. The legacy of the silver methods and the new anatomy of the basal forebrain: implications for neuropsychiatry and drug abuse. Scand J Psychol. 2003;44:189–201.

Article  PubMed  Google Scholar 

Schmued LC, Albertson C, Slikker W. Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res. 1997;751:37–46.

Article  CAS  PubMed  Google Scholar 

Anderson KJ, Fugaccia I, Scheff SW. Fluoro-jade B stains quiescent and reactive astrocytes in the rodent spinal cord. J Neurotrauma. 2003;20:1223–31.

Article  PubMed  Google Scholar 

Chaovipoch P, Jelks KAB, Gerhold LM, West EJ, Chongthammakun S, Floyd CL. 17beta-estradiol is protective in spinal cord injury in post- and pre-menopausal rats. J Neurotrauma. 2006;23:830–52.

Article  PubMed  Google Scholar 

Clarke EC, Choo AM, Liu J, Lam CK, Bilston LE, Tetzlaff W, et al. Anterior fracture-dislocation is more severe than lateral: a biomechanical and neuropathological comparison in rat thoracolumbar spine. J Neurotrauma. 2008;25:371–83.

Article  PubMed  Google Scholar 

Xiong G, Metheny H, Hood K, Jean I, Farrugia AM, Johnson BN, et al. Detection and verification of neurodegeneration after traumatic brain injury in the mouse: immunohistochemical staining for amyloid precursor protein. Brain Pathol. 2023;33:e13163.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Povlishock JT, Marmarou A, McIntosh T, Trojanowski JQ, Moroi J. Impact acceleration injury in the rat: evidence for focal axolemmal change and related neurofilament sidearm alteration. J Neuropathol Exp Neurol. 1997;56:347–59.

Article  CAS  PubMed  Google Scholar 

Stone JR, Singleton RH, Povlishock JT. Intra-axonal neurofilament compaction does not evoke local axonal swelling in all traumatically injured axons. Exp Neurol. 2001;172:320–31.

Article  CAS  PubMed 

Comments (0)

No login
gif