Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1736–88.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
screening. In: The Free Dictionary [Internet]. [cited 2023 May 30]. https://medical-dictionary.thefreedictionary.com/screening. Accessed 30 May 2023.
Preventing cancer [Internet]. [cited 2022 Sep 20]. https://www.who.int/activities/preventing-cancer. Accessed 20 Sep 2022.
Cancer Screening Overview (PDQ®) - NCI [Internet]. 2023 [cited 2024 Mar 27]. https://www.cancer.gov/about-cancer/screening/hp-screening-overview-pdq. Accessed 27 Mar 2024.
Liberti MV, Locasale JW. The warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211–8.
Article CAS PubMed PubMed Central Google Scholar
Reske SN, Grillenberger KG, Glatting G, Port M, Hildebrandt M, Gansauge F, et al. Overexpression of glucose transporter 1 and increased fdg uptake in pancreatic carcinoma. J Nucl Med. 1997;38(9):1344–8.
Brown RS, Wahl RL. Overexpression of glut-1 glucose transporter in human breast cancer an immunohistochemical study. Cancer. 1993;72(10):2979–85.
Article CAS PubMed Google Scholar
Rempel A, Mathupala S, Griffin C, Hawkins A, Pedersen P. Glucose catabolism in cancer cells: amplification of the gene encoding type II hexokinase. Cancer Res. 1996;1(56):2468–71.
Caracó C, Aloj L, Chen LY, Chou JY, Eckelman WC. Cellular release of [18F]2-fluoro-2-deoxyglucose as a function of the glucose-6-phosphatase enzyme system*. J Biol Chem. 2000;275(24):18489–94.
Soelberg KK, Bonnema SJ, Brix TH, Hegedüs L. Risk of malignancy in thyroid incidentalomas detected by 18 F-fluorodeoxyglucose positron emission tomography: a systematic review. Thyroid. 2012;22(9):918–25.
Article CAS PubMed Google Scholar
Cho SK, Choi JY, Yoo J, Cheon M, Lee JY, Hyun SH, et al. Incidental focal 18F-FDG uptake in the prostate: clinical significance and differential diagnostic criteria. Nucl Med Mol Imaging. 2011;45(3):192–6.
Article CAS PubMed PubMed Central Google Scholar
Kang BJ, Lee JH, Yoo IR, Kim SH, Choi JJ, Jeong SH, et al. Clinical significance of incidental finding of focal activity in the breast at 18F-FDG PET/CT. Am J Roentgenol. 2011;197(2):341–7.
Kawada S, Suzuki Y, Hinohara S, Koide S, Ono Y, Ashikaga H. Cancer screening with PET: advantages and limitations. Rinsho Byori. 2007;55(7):656–67.
PRISMA [Internet]. [cited 2023 Jun 17]. http://prisma-statement.org/prismastatement/flowdiagram.aspx. Accessed 17 Jun 2023.
Bristol U of. Resources [Internet]. University of Bristol; [cited 2023 Jun 10]. https://www.bristol.ac.uk/population-health-sciences/projects/quadas/resources/. Accessed 10 Jun 2023.
OpenMeta[Analyst] [Internet]. [cited 2023 Jun 17]. http://www.cebm.brown.edu/openmeta/download.html. Accessed 17 Jun 2023.
RevMan [Internet]. [cited 2023 Jun 17]. https://training.cochrane.org/online-learning/core-software/revman. Accessed 17 Jun 2023.
Yasuda S, Ide M, Fujii H, Nakahara T, Mochizuki Y, Takahashi W, et al. Application of positron emission tomography imaging to cancer screening. Br J Cancer. 2000;83(12):1607–11.
Article CAS PubMed PubMed Central Google Scholar
Ono K, Ochiai R, Yoshida T, Kitagawa M, Omagari J, Kobayashi H, et al. The detection rates and tumor clinical/pathological stages of whole-body FDG-PET cancer screening. Ann Nucl Med. 2007;21(1):65–72.
Terauchi T, Murano T, Daisaki H, Kanou D, Shoda H, Kakinuma R, et al. Evaluation of whole-body cancer screening using 18F-2-deoxy-2-fluoro-d-glucose positron emission tomography: a preliminary report. Ann Nucl Med. 2008;22(5):379–85.
Nishizawa S, Kojima S, Teramukai S, Inubushi M, Kodama H, Maeda Y, et al. Prospective evaluation of whole-body cancer screening with multiple modalities including [18 F]fluorodeoxyglucose positron emission tomography in a healthy population: a preliminary report. J Clin Oncol. 2009;27(11):1767–73.
Sengoku T, Matsumura K, Usami M, Takahashi Y, Nakayama T. Diagnostic accuracy of FDG-PET cancer screening in asymptomatic individuals: use of record linkage from the Osaka cancer registry. Int J Clin Oncol. 2014;19(6):989–97.
Chan HP, Liu WS, Liou WS, Hu C, Chiu YL, Peng NJ. Comparison of FDG-PET/CT for cancer detection in populations with different risks of underlying malignancy. In Vivo. 2020;34(1):469–78.
Article CAS PubMed PubMed Central Google Scholar
Shen YY, Su CT, Chen GJS, Chen YK, Liao ACF, Tsai FS. The value of 18F-fluorodeoxyglucose positron emission tomography with the additional help of tumor markers in cancer screening. Neoplasma. 2003;50(3):217–21.
Tong J, et al. Cancer screening of asymptomatic individuals using 18F-FDG PET/CT in China: a retrospective study. Discov Med. 2016;22(121):181–8.
Murano T, Iinuma T, Tateno Y, Daisaki H, Tateishi U, Terauchi T, et al. Risk-benefit analysis of 18FDG PET cancer screening. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2008;1(64):1151–6.
Shibata K, Arai M, Matsuura M, Uno K, Yoshida T, Momose T, et al. Relationship of detection rate of PET cancer screening examinees and risk factors: analysis of background of examinees. Ann Nucl Med. 2011;25(4):261–7.
Chen YK, Ding HJ, Su CT, Shen YY, Chen LK, Liao AC, et al. Application of PET and PET/CT imaging for cancer screening. Anticancer Res. 2004;24(6):4103–8.
Kojima S, Zhou B, Teramukai S, Hara A, Kosaka N, Matsuo Y, et al. Cancer screening of healthy volunteers using whole-body 18F-FDG-PET scans: the nishidai clinic study. Eur J Cancer. 2007;43(12):1842–8.
Minamimoto R, Senda M, Jinnouchi S, Terauchi T, Yoshida T, Murano T, et al. The current status of an FDG-PET cancer screening program in Japan, based on a 4-year (2006–2009) nationwide survey. Ann Nucl Med. 2013;27(1):46–57.
Schillaci O, Urbano N. Digital PET/CT: a new intriguing chance for clinical nuclear medicine and personalized molecular imaging. Eur J Nucl Med Mol Imaging. 2019;46(6):1222–5.
Gonzalez-Montoro A, Ullah MN, Levin CS. Advances in detector instrumentation for PET. J Nucl Med. 2022;63(8):1138–44. https://doi.org/10.2967/jnumed.121.262509.PMID:35914819;PMCID:PMC9364348.
Article CAS PubMed PubMed Central Google Scholar
Hatami S, Frye S, McMunn A, Botkin C, Muzaffar R, Christopher K, et al. Added value of digital over analog PET/CT: more significant as image field of view and body mass index increase. J Nucl Med Technol. 2020;48(4):354–60.
Shiga T, Morimoto Y, Kubo N, Katoh N, Katoh C, Takeuchi W, Usui R, Hirata K, Kojima S, Umegaki K, Shirato H. A new PET scanner with semiconductor detectors enables better identification of intratumoral inhomogeneity. J Nucl Med. 2009;50(1):148–55.
Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3–12.
Article CAS PubMed PubMed Central Google Scholar
Katal S, Eibschutz LS, Saboury B, Gholamrezanezhad A, Alavi A. Advantages and applications of total-body PET scanning. Diagnostics. 2022;12(2):426.
Article PubMed PubMed Central Google Scholar
Nensa F, Beiderwellen K, Heusch P, Wetter A. Clinical applications of PET/MRI: current status and future perspectives. Diagn Interv Radiol. 2014;20(5):438–47. https://doi.org/10.5152/dir.2014.14008.
Comments (0)