Oral mucosa cues for regeneration using Photobiomodulation

Sen CK, Gordillo GM, Roy S et al (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regeneration 17:763–771. https://doi.org/10.1111/j.1524-475X.2009.00543.x

Article  PubMed  Google Scholar 

Leavitt T, Hu MS, Marshall CD et al (2016) Scarless wound healing: finding the right cells and signals. Cell Tissue Res 365:483–493. https://doi.org/10.1007/s00441-016-2424-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Griffin MF, Fahy EJ, King M et al (2022) Understanding scarring in the oral mucosa. Adv Wound Care (New Rochelle) 11:537–547. https://doi.org/10.1089/wound.2021.0038

Article  PubMed  Google Scholar 

Glim JE, Everts V, Niessen FB et al (2014) Extracellular matrix components of oral mucosa differ from skin and resemble that of foetal skin. Arch Oral Biol 59:1048–1055. https://doi.org/10.1016/j.archoralbio.2014.05.019

Article  CAS  PubMed  Google Scholar 

Lee HG, Eun HC (1999) Differences between fibroblasts cultured from oral mucosa and normal skin: implication to wound healing. J Dermatol Sci 21:176–182. https://doi.org/10.1016/s0923-1811(99)00037-7

Article  CAS  PubMed  Google Scholar 

Glim JE, Beelen RHJ, Niessen FB et al (2015) The number of immune cells is lower in healthy oral mucosa compared to skin and does not increase after scarring. Arch Oral Biol 60:272–281. https://doi.org/10.1016/j.archoralbio.2014.10.008

Article  PubMed  Google Scholar 

Oudhoff MJ, van den Keijbus PAM, Kroeze KL et al (2009) Histatins enhance wound closure with oral and non-oral. Cells J Dent Res 88:846–850. https://doi.org/10.1177/0022034509342951

Article  CAS  PubMed  Google Scholar 

Frank S, Stallmeyer B, Kämpfer H et al (2000) Leptin enhances wound re-epithelialization and constitutes a direct function of leptin in skin repair. J Clin Invest 106:501–509. https://doi.org/10.1172/JCI9148

Article  CAS  PubMed  PubMed Central  Google Scholar 

van‘t Hof W, Veerman ECI, Nieuw Amerongen AV et al (2014) Antimicrobial defense systems in saliva. Mongr Oral Sci.:24:40–51. https://doi.org/10.1159/000358783; 2014:40–51

Hong BY, Sobue T, Choquette L et al (2019) Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. Microbiome 7:66. https://doi.org/10.1186/s40168-019-0679-5

Article  PubMed  PubMed Central  Google Scholar 

do Valle IB, Prazeres PHDM, Mesquita RA et al (2020) Photobiomodulation drives pericyte mobilization towards skin regeneration. Sci Rep 10:19257. https://doi.org/10.1038/s41598-020-76243-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antunes HS, Herchenhorn D, Small IA et al (2013) Evaluating the cost-effectiveness of low-level laser therapy (LLLT) in head and neck cancer patients submitted to concurrent chemoradiation. Oral Oncol 52:85–90. https://doi.org/10.1016/j.oraloncology.2015.10.022

Article  Google Scholar 

Zadik Y, Arany PR, Fregnani ER et al (2019) Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Support Care Cancer 27:3969–3983. https://doi.org/10.1007/s00520-019-04890-2

Article  PubMed  Google Scholar 

Diniz IMA, Carreira ACO, Sipert CR et al (2018) Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4-loaded hydrogel directs hard tissue bioengineering. J Cell Physiol 233:4907–4918. https://doi.org/10.1002/jcp.26309

Article  CAS  PubMed  Google Scholar 

Gomes NA, do Valle IB, Gleber-Netto FO et al (2022) Nestin and NG2 transgenes reveal two populations of perivascular cells stimulated by photobiomodulation. J Cell Physiol 237:2198–2210. https://doi.org/10.1002/jcp.30680

Article  CAS  PubMed  Google Scholar 

Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099. https://doi.org/10.1111/j.1751-1097.2008.00394.x

Article  CAS  PubMed  Google Scholar 

Suh S, Choi EH, Atanaskova Mesinkovska N (2020) The expression of opsins in the human skin and its implications for photobiomodulation: a systematic review. Photodermatol Photoimmunol Photomed 36:329–338. https://doi.org/10.1111/phpp.12578

Article  PubMed  PubMed Central  Google Scholar 

Feng J, Zhang Y, Xing D (2012) Low-power laser irradiation (LPLI) promotes VEGF expression and vascular endothelial cell proliferation through the activation of ERK/Sp1 pathway. Cell Signal 24:1116–1125. https://doi.org/10.1016/j.cellsig.2012.01.013

Article  CAS  PubMed  Google Scholar 

Arany PR, Cho A, Hunt TD et al (2014) Photoactivation of endogenous latent transforming growth factor–β1 directs dental stem cell differentiation for regeneration. Sci Transl Med 6(238):238ra69. https://doi.org/10.1126/scitranslmed.3008234

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Farias Gabriel A, Wagner VP, Correa C et al (2019) Photobiomodulation therapy modulates epigenetic events and NF-κB expression in oral epithelial wound healing. Lasers Med Sci 34:1465–1472. https://doi.org/10.1007/s10103-019-02745-0

Article  PubMed  Google Scholar 

Engel KW, Khan I, Arany PR (2016) Cell lineage responses to photobiomodulation therapy. J Biophotonics 9:1148–1156. https://doi.org/10.1002/jbio.201600025

Article  CAS  PubMed  Google Scholar 

Grossman N, Schneid N, Reuveni H et al (1998) 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 22:212–218. https://doi.org/10.1002/(sici)1096-9101

Article  CAS  PubMed  Google Scholar 

Wagner VP, Curra M, Webber LP et al (2016) Photobiomodulation regulates cytokine release and new blood vessel formation during oral wound healing in rats. Lasers Med Sci 31:665–671. https://doi.org/10.1007/s10103-016-1904-0

Article  PubMed  Google Scholar 

Basso FG, Soares DG, Pansani TN et al (2016) Proliferation, migration, and expression of oral-mucosal‐healing‐related genes by oral fibroblasts receiving low‐level laser therapy after inflammatory cytokines challenge. Lasers Surg Med 48:1006–1014. https://doi.org/10.1002/lsm.22553

Article  PubMed  Google Scholar 

Oliveira RF, Marquiore LF, Gomes CBS et al (2022) Interplay between epithelial and mesenchymal cells unveils essential proinflammatory and pro-resolutive mediators modulated by photobiomodulation therapy at 660 nm. Wound Repair Regeneration 30:345–356. https://doi.org/10.1111/wrr.13010

Article  PubMed  Google Scholar 

Chaudary S, Karner L, Weidinger A et al (2020) In vitro effects of 635 nm photobiomodulation under hypoxia/reoxygenation culture conditions. J Photochem Photobiol B 209:111935. https://doi.org/10.1016/j.jphotobiol.2020.111935

Article  CAS  PubMed  Google Scholar 

Mignon C, Uzunbajakava NE, Raafs B et al (2017) Photobiomodulation of human dermal fibroblasts in vitro: decisive role of cell culture conditions and treatment protocols on experimental outcome. Sci Rep 7:2797. https://doi.org/10.1038/s41598-017-02802-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diniz IMA, Souto GR, Freitas IDP et al (2020) Photobiomodulation enhances cisplatin cytotoxicity in a culture model with oral cell lineages. Photochem Photobiol 96:182–190. https://doi.org/10.1111/php.13152

Article  CAS  PubMed  Google Scholar 

de Abreu PTR, de Arruda JAA, Mesquita RA et al (2019) Photobiomodulation effects on keratinocytes cultured in vitro: a critical review. Lasers Med Sci 34:1725–1734. https://doi.org/10.1007/s10103-019-02813-5

Article  PubMed  Google Scholar 

Sá MGRS, Queiroz-Junior CM, de Souza PEA et al (2024) Effect of photobiomodulation on inflammatory cytokines produced by HaCaT keratinocytes. J Oral Biol Craniofac Res 14:79–85.

Comments (0)

No login
gif