Wang, H., Dong, L., Song, W., Zhao, X., Xia, J., Liu, T.: Improved u-net-based novel segmentation algorithm for underwater mineral image. Intell Autom Soft Comput 32(3) (2022)
Wang, Y., Tang, C., Cai, M., Yin, J., Wang, S., Cheng, L., Wang, R., Tan, M.: Real-time underwater onboard vision sensing system for robotic gripping. IEEE Trans. Instrum. Meas. 70, 1–11 (2020)
Ren, B., Feng, J., Wei, Y., Huang, Y.: Underwater target detection algorithm based on improved yolov5. Adv. Eng. Technol. Res. 1(3), 713–713 (2022)
Liu, B., Liu, Z., Men, S., Li, Y., Ding, Z., He, J., Zhao, Z.: Underwater hyperspectral imaging technology and its applications for detecting and mapping the seafloor: a review. Sensors 20(17), 4962 (2020)
Article ADS MATH Google Scholar
Jung, Y.H., Kim, G., Yoo, W.S.: Study on distortion compensation of underwater archaeological images acquired through a fisheye lens and practical suggestions for underwater photography-a case of Taean mado shipwreck no. 1 and no. 2. J. Conserv. Sci. 37(4), 312–321 (2021)
Horning, N., Robinson, J.A., Sterling, E.J., Turner, W.: Remote sensing for ecology and conservation: a handbook of techniques. Oxford University Press (2010)
Mobley, C.D.: Radiative transfer in the ocean. Encycl. Ocean Sci. 4, 2321–2330 (2001)
He, D.M., Seet, G.G.: Divergent-beam lidar imaging in turbid water. Opt. Lasers Eng. 41(1), 217–231 (2004)
Treibitz, T., Schechner, Y.Y.: Active polarization descattering. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2008)
Drews, P., Nascimento, E., Moraes, F., Botelho, S., Campos, M.: Transmission estimation in underwater single images. In: Proceedings of the IEEE international conference on computer vision workshops, pp. 825–830 (2013)
Li, C., Quo, J., Pang, Y., Chen, S., Wang, J.: Single underwater image restoration by blue-green channels dehazing and red channel correction. In: 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 1731–1735. IEEE (2016)
Zhang, W., Pan, X., Xie, X., Li, L., Wang, Z., Han, C.: Color correction and adaptive contrast enhancement for underwater image enhancement. Comput. Electr. Eng. 91, 106981 (2021)
Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Garcia, R.: Locally adaptive color correction for underwater image dehazing and matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9 (2017)
Li, C., Guo, C., Ren, W., Cong, R., Hou, J., Kwong, S., Tao, D.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2019)
Article ADS MATH Google Scholar
Islam, M.J., Xia, Y., Sattar, J.: Fast underwater image enhancement for improved visual perception. IEEE Robot. Autom. Lett. 5(2), 3227–3234 (2020)
Buchsbaum, G.: A spatial processor model for object colour perception. J. Franklin Inst. 310(1), 1–26 (1980)
Ancuti, C., Ancuti, C.O., Haber, T., Bekaert, P.: Enhancing underwater images and videos by fusion. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 81–88. IEEE (2012)
Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Bekaert, P.: Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 27(1), 379–393 (2017)
Article ADS MathSciNet MATH Google Scholar
Song, H., Wang, R.: Underwater image enhancement based on multi-scale fusion and global stretching of dual-model. Mathematics 9(6), 595 (2021)
Tao, Y., Dong, L., Xu, W.: A novel two-step strategy based on white-balancing and fusion for underwater image enhancement. IEEE Access 8, 217651–217670 (2020)
Fu, X., Zhuang, P., Huang, Y., Liao, Y., Zhang, X.P., Ding, X.: A retinex-based enhancing approach for single underwater image. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4572–4576. IEEE (2014)
Zhang, S., Wang, T., Dong, J., Yu, H.: Underwater image enhancement via extended multi-scale retinex. Neurocomputing 245, 1–9 (2017)
Zhuang, P., Wu, J., Porikli, F., Li, C.: Underwater image enhancement with hyper-laplacian reflectance priors. IEEE Trans. Image Process. 31, 5442–5455 (2022)
Article ADS MATH Google Scholar
Hitam, M.S., Awalludin, E.A., Yussof, W.N.J.H.W., Bachok, Z.: Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In: 2013 International Conference on Computer Applications Technology (ICCAT), pp. 1–5. IEEE (2013)
Ghani, A.S.A., Isa, N.A.M.: Enhancement of low quality underwater image through integrated global and local contrast correction. Appl. Soft Comput. 37, 332–344 (2015)
Zhang, W., Zhuang, P., Sun, H.H., Li, G., Kwong, S., Li, C.: Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement. IEEE Trans. Image Process. 31, 3997–4010 (2022)
Article ADS MATH Google Scholar
Zhang, W., Jin, S., Zhuang, P., Liang, Z., Li, C.: Underwater image enhancement via piecewise color correction and dual prior optimized contrast enhancement. IEEE Signal Process. Lett. 30, 229–233 (2023)
Article ADS MATH Google Scholar
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)
Peng, Y.T., Cao, K., Cosman, P.C.: Generalization of the dark channel prior for single image restoration. IEEE Trans. Image Process. 27(6), 2856–2868 (2018)
Article ADS MathSciNet MATH Google Scholar
Drews, P.L., Nascimento, E.R., Botelho, S.S., Campos, M.F.M.: Underwater depth estimation and image restoration based on single images. IEEE Comput. Graphics Appl. 36(2), 24–35 (2016)
Liu, H., Chau, L.P.: Underwater image restoration based on contrast enhancement. In: 2016 IEEE International Conference on Digital Signal Processing (DSP), pp. 584–588. IEEE (2016)
Song, W., Wang, Y., Huang, D., Liotta, A., Perra, C.: Enhancement of underwater images with statistical model of background light and optimization of transmission map. IEEE Trans. Broadcast. 66(1), 153–169 (2020)
Akkaynak, D., Treibitz, T.: Sea-thru: A method for removing water from underwater images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1682–1691 (2019)
Liang, Z., Zhang, W., Ruan, R., Zhuang, P., Li, C.: Gifm: an image restoration method with generalized image formation model for poor visible conditions. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2022)
Cheng, D., Prasad, D.K., Brown, M.S.: Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. JOSA A 31(5), 1049–1058 (2014)
Article ADS MATH Google Scholar
Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)
Zhu, Z., Wei, H., Hu, G., Li, Y., Qi, G., Mazur, N.: A novel fast single image dehazing algorithm based on artificial multiexposure image fusion. IEEE Trans. Instrum. Meas. 70, 1–23 (2020)
Burt, P.J., Adelson, E.H.: The laplacian pyramid as a compact image code. In: Readings in computer vision, pp. 671–679. Elsevier (1987)
Hou, G., Zhao, X., Pan, Z., Yang, H., Tan, L., Li, J.: Benchmarking underwater image enhancement and restoration, and beyond. IEEE Access 8, 122078–122091 (2020)
Carlevaris-Bianco, N., Mohan, A., Eustice, R.M.: Initial results in underwater single image dehazing. In: Oceans 2010 Mts/IEEE Seattle, pp. 1–8. IEEE (2010)
Song, W., Wang, Y., Huang, D., Tjondronegoro, D.: A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration. In: Advances in Multimedia Information Processing–PCM 2018: 19th Pacific-Rim Conference on Multimedia, Hefei, China, September 21-22, 2018, Proceedings, Part I 19, pp. 678–688. Springer (2018)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Article ADS MATH Google Scholar
Wang, S., Ma, K., Yeganeh, H., Wang, Z., Lin, W.: A patch-structure representation method for quality assessment of contrast changed images. IEEE Signal Process. Lett. 22(12), 2387–2390 (2015)
Article ADS MATH Google Scholar
Yang, M., Sowmya, A.: An underwater color image quality evaluation metric. IEEE Trans. Image Process. 24(12), 6062–6071 (2015)
Article ADS MathSciNet MATH Google Scholar
Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Oceanic Eng. 41(3), 541–551 (2015)
Article ADS MATH Google Scholar
Guo, C., Wu, R., Jin, X., Han, L., Chai, Z., Zhang, W., Li, C.: Underwater ranker: Learn which is better and how to be better. In: Proceedings of the AAAI Conference on Artificial Intelligence (2023)
Li, C., Anwar, S., Hou, J., Cong, R., Guo, C., Ren, W.: Underwater image enhancement via medium transmission-guided multi-color space embedding. IEEE Trans. Image Process. 30, 4985–5000 (2021)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)
Comments (0)