Iacopetta, D., Ceramella, J., Catalano, A., Mariconda, A., Giuzio, F., Saturnino, C., Longo, P., and Sinicropi, M.S., Inorganics, 2023, vol. 11, p. 320. https://doi.org/10.3390/inorganics11080320
Juyal, V.K., Pathak, A., Panwar, M., Thakuri, S.C., Prakash, O., Agrwal, A., and Nand, V., J. Organomet. Chem., 2023, vol. 999, p. 122825. https://doi.org/10.1016/j.jorganchem.2023.122825
Ashraf, T., Ali, B., Qayyum, H., Haroone, M.S., and Shabbir, G., Inorg. Chem. Commun., 2023, vol. 150, p. 110449. https://doi.org/10.1016/j.inoche.2023.110449
Boulechfar, C., Ferkous, H., Delimi, A., Djedouani, A., Abdesalem, K., Boublia, A., Darwish, A.S., Lemaoui, T., Verma, R., and Benguerba, Y., Inorg. Chem. Commun., 2023, vol. 150, p. 110451. https://doi.org/10.1016/j.inoche.2023.110451
Ejiah, F.N., Rofiu, M.O., Oloba-Whenu, O.A., and Fasina, T.M., Mater. Adv., 2023, vol. 4, p. 2308. https://doi.org/10.1039/D3MA00097D
Sandhu, Q.U.A., Pervaiz, M., Majid, A., Younas, U., Saeed, Z., Ashraf, A., Rashad, R., Khan, M., Ullah, S., Ali, F., and Jelani, S., J. Coord. Chem., 2023, vol. 76, p. 1094. https://doi.org/10.1080/00958972.2023.2226794
Parvarinezhad, S., Salehi, M., Kubicki, M., and Malekshah, R.E., J. Mol. Struct., 2022, vol. 1260, p. 132780. https://doi.org/10.1016/j.molstruc.2022.132780
Roozbahani, P., Salehi, M., Malekshah, R.E., and Kubicki, M., Inorg. Chim. Acta., 2019, vol. 496, p. 119022. https://doi.org/10.1016/j.ica.2019.119022
Tian, Y., Wang, K., Zhang, H., Wu, X., and Zhong, C., Tetrahedron, 2022, vol. 113, p. 132756. https://doi.org/10.1016/j.tet.2022.132756
Gautama, C., Srivastava, D., Kociok-Köhn, G., Gosavic, S.W., Sharmaa, V.K., Chauhan, R., Late, D.J., Kumar, A., and Muddassir, M., RSC Adv., 2023, vol. 13, p. 9046. https://doi.org/10.1039/D3RA00344B
Ghasemi, S., and Andami, Z., ChemistrySelect, 2017, vol. 2, p. 5864. https://doi.org/10.1002/slct.201700809
Boulechfar, C., Ferkous, H., Delimi, A., Berredjem, M., Kahlouche, A., Madaci, A., Djellali, S., Boufas, S., Djedouani, A., Errachid, A., Khan, A.A., Boublia, A., Lemaoui, T., and Benguerba, Y., J. Mol. Liq., 2023, vol. 378, p. 121637. https://doi.org/10.1016/j.molliq.2023.121637
Afshari, F., Ghomi, E.R., Dinari, M., and Ramakrishna, S., ChemistrySelect, 2023, vol. 8, p. e202203231. https://doi.org/10.1002/slct.202203231
Chakraborty, H., Paul, N., and Rahman, N., Trans. Met. Chem., 1994, vol. 19, p. 524. https://doi.org/10.1007/BF00136366
Roozbahani, P., Malekshah, R.E., Salehi, M., Parvarinezhad, S., and Kubicki, M., Appl. Organomet. Chem., 2023, vol. 37, p. e7254. https://doi.org/10.1002/aoc.7254
Parvarinezhad, S., Salehi, M., Kubicki, M., and Malekshah, R.E., Appl. Organomet. Chem., 2023, vol. 36, p. e6836. https://doi.org/10.1002/aoc.6563
Ababneh, T.S., Al-Shboul, T.M., Jazzazi, T.M., Alomari, M.I., Görls, H., and Westerhausen, M., Trans. Met. Chem., 2020, vol. 45, p. 435. https://doi.org/10.1007/s11243-020-00395-8
Al-Ebaisat, H.S., Ababneh, T.S., Al-Shboul, T.M., and Jazzazi, T.M., J. Pure Appl. Chem. Res., 2015, vol. 5, p. 125. https://doi.org/10.21776/ub.jpacr.2016.005.03.248
Jazzazi, T.M., Ababneh, T.S., and Abboushi, E.K., Jordan J. Chem., 2019, vol. 14, p. 81.
Al-Shboul, T.M., Ziemann, S., Görls, H., Krieck, S., and Westerhausen, M., Z. anorg. allg. Chem., 2019, vol. 645, p. 292. https://doi.org/10.1002/zaac.201800404
Al-Shboul, T.M., Ziemann, S., Görls, H., Jazzazi, T.M., Krieck, S., and Westerhausen, M., Eur. J. Inorg. Chem., 2018, vol. 14, p. 1563. https://doi.org/10.1002/ejic.201701472
Al-Shboul, T.M.A., El-khateeb, M., Obeidat, Z.H., Ababneh, T.S., AlTarawneh, S.S., Al Zoubi, M.S., Alshaer, W., Abu Seni, A., Qasem, T., Moriyama, H., Yoshida, Y., Kitagawa, H., and Jazzazi, T.M.A., Inorganics, 2022, vol. 10, p. 112. https://doi.org/10.3390/inorganics10080112
Ababneh, T.S., El-khateeb, M., Tanash, A.K., Al-Shboul, T.M.A., Shammout, M.J., Jazzazi, T.M.A., Alomari, M., Daoud, S., and Talib, W., Polish J. Chem. Tech., 2021, vol. 23, p. 7. https://doi.org/10.2478/pjct-2021-0002
Kheirkhah, B.R., Al-Shboul, T.M.A., Pröhl, F.E., Krieck, S., Görls, H., and Westerhausen, M., Eur. J. Inorg. Chem., 2022, vol. 36, p. e202200528. https://doi.org/10.1002/ejic.202200528
Daoud, S., Thiab, S., Jazzazi, T.M.A., Al-Shboul, T.M.A., and Ullah, S., Acta Pharm., 2022, vol. 72, p. 449. https://doi.org/10.2478/acph-2022-0019
Article CAS PubMed Google Scholar
Jazzazi, T.M.A., Al-Shboul, T.M.A., El-khateeb, M., Moriyama, H., Yoshida, Y., and Kitagawa, H., Trans. Met. Chem., 2024, vol. 49, p. 245. https://doi.org/10.1007/s11243-024-00578-7
Hernández-Pacheco, P., Zelada-Guillén, G.A., RomeroÁvila, M., Cañas-Alonso, R.C., Flores-Álamo, M., and Escárcega-Bobadilla, M.V., Chem. Plus. Chem., 2023, vol. 88, p. e202200310. https://doi.org/10.1002/cplu.202200409
Article CAS PubMed Google Scholar
CrysAlisPro 1.171.42.84a, Software for Single Crystal X-ray Diffractometers. Rigaku Oxford Diffraction, Japan, 2023.
Sheldrick, G.M., Acta Crystallogr. (A), 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218
Sheldrick, G.M., Acta Crystallogr. (C), 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Cryst., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726
Spartan’24, Molecular modelling and computational chemistry application. Wavefunction Inc., Irvine, CA, USA.
Zhao, Y., and Truhla, D.G., Theor. Chem. Acc., 2008, vol. 120, nos. 1–3, p. 215. https://doi.org/10.1007/s00214-007-0310-x
Petersson, G.A., Bennett, A., Tensfeld, T.G., AlLaham, M.A., Shirley, W.A., and Mantzaris, J., J. Chem. Phys., 1988, vol. 89, p. 2193. https://doi.org/10.1063/1.455064
Petersson, G.A., Tensfeldt, T.G., and Montgomery, J.A.Jr., J. Chem. Phys., 1991, vol. 94, p. 6091. https://doi.org/10.1063/1.460448
Kassim, A., Omuse, G., Premji, Z., and Revathi, G., Ann. Clin. Microbiol., 2016, vol. 15, p. 21. https://doi.org/10.1186/s12941-016-0135-3
MacLowry, J.D., Jaqua, M.J., and Selepak, S.T., Appl. Microbiol., 1970, vol. 20, p. 46. https://doi.org/10.1128/am.20.1.46-53.1970
Comments (0)