Konishi H, Koizumi S, Kiyama H (2022) Phagocytic astrocytes: Emerging from the shadows of microglia. Glia 70:1009–1026. https://doi.org/10.1002/glia.24145
Article PubMed PubMed Central Google Scholar
Chung WS, Clarke LE, Wang GX et al (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:394–400. https://doi.org/10.1038/nature12776
Article PubMed PubMed Central Google Scholar
Davis CHO, Kim KY, Bushong EA et al (2014) Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A 111:9633–9638. https://doi.org/10.1073/pnas.1404651111
Article PubMed PubMed Central Google Scholar
Nguyen JV, Soto I, Kim KY et al (2011) Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma. Proc Natl Acad Sci U S A 108:1176–1181. https://doi.org/10.1073/pnas.1013965108
Article PubMed PubMed Central Google Scholar
Damisah EC, Hill RA, Rai A et al (2020) Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo. Sci Adv 6:3239. https://doi.org/10.1126/sciadv.aba3239
Ponath G, Ramanan S, Mubarak M et al (2017) Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain 140:399–413. https://doi.org/10.1093/brain/aww298
Wakida NM, Gomez-Godinez V, Li H et al (2020) Calcium dynamics in astrocytes during cell injury. Front Bioeng Biotechnol 8:912. https://doi.org/10.3389/fbioe.2020.00912
Article PubMed PubMed Central Google Scholar
Wyss-Coray T, Loike JD, Brionne TC et al (2003) Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat Med 9:453–457. https://doi.org/10.1038/nm838
Konishi H, Okamoto T, Hara Y et al (2020) Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO J 39:e104464. https://doi.org/10.15252/embj.2020104464
Article PubMed PubMed Central Google Scholar
Burnstock G, Dale N (2015) Purinergic signalling during development and ageing. Purinergic Signal 11:277–305. https://doi.org/10.1007/s11302-015-9452-9
Article PubMed PubMed Central Google Scholar
Drago F, Lombardi M, Prada I et al (2017) ATP modifies the proteome of extracellular vesicles released by microglia and influences their action on astrocytes. Front Pharmacol 8:910. https://doi.org/10.3389/fphar.2017.00910
Article PubMed PubMed Central Google Scholar
Elliott MR, Chekeni FB, Trampont PC et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286. https://doi.org/10.1038/NATURE08296
Article PubMed PubMed Central Google Scholar
Jacques-Silva MC, Rodnight R, Lenz G et al (2004) P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br J Pharmacol 141:1106–1117. https://doi.org/10.1038/sj.bjp.0705685
Article PubMed PubMed Central Google Scholar
Munoz FM, Patel PA, Gao X et al (2020) Reactive oxygen species play a role in P2X7 receptor-mediated IL-6 production in spinal astrocytes. Purinergic Signal 16:97–107. https://doi.org/10.1007/S11302-020-09691-5
Article PubMed PubMed Central Google Scholar
Vignoli B, Canossa M (2017) Glioactive ATP controls BDNF recycling in cortical astrocytes. Commun Integr Biol 10:e1277296. https://doi.org/10.1080/19420889.2016.1277296
Article PubMed PubMed Central Google Scholar
Zhang JM, Wang HK, Ye CQ et al (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982. https://doi.org/10.1016/S0896-6273(03)00717-7
Domercq M, Brambilla L, Pilati E et al (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 281:30684–30696. https://doi.org/10.1074/jbc.M606429200
Adzic M, Stevanovic I, Josipovic N et al (2017) Extracellular ATP induces graded reactive response of astrocytes and strengthens their antioxidative defense in vitro. J Neurosci Res 95:1053–1066. https://doi.org/10.1002/jnr.23950
Lagos-Cabré R, Burgos-Bravo F, Avalos AM, Leyton L (2020) Connexins in astrocyte migration. Front Pharmacol 10:1546. https://doi.org/10.3389/fphar.2019.01546
Article PubMed PubMed Central Google Scholar
Fairley LH, Lai KO, Wong JH et al (2023) Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer’s disease. Proc Natl Acad Sci U S A 120:e2209177120. https://doi.org/10.1073/PNAS.2209177120
Article PubMed PubMed Central Google Scholar
Marques E, Kramer R, Ryan DG (2024) Multifaceted mitochondria in innate immunity. NPJ Metab Health Dis 2:6. https://doi.org/10.1038/s44324-024-00008-3
Article PubMed PubMed Central Google Scholar
Mills EL, Kelly B, Logan A et al (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167:457-470.e13. https://doi.org/10.1016/j.cell.2016.08.064
Article PubMed PubMed Central Google Scholar
Van den Bossche J, Baardman J, Otto NA et al (2016) Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep 17:684–696. https://doi.org/10.1016/J.CELREP.2016.09.008
Vijayan V, Pradhan P, Braud L et al (2019) Human and murine macrophages exhibit differential metabolic responses to lipopolysaccharide - A divergent role for glycolysis. Redox Biol 22:101147. https://doi.org/10.1016/J.REDOX.2019.101147
Article PubMed PubMed Central Google Scholar
Abbracchio MP, Ceruti S (2006) Roles of P2 receptors in glial cells: Focus on astrocytes. Purinergic Signal 2:595–604. https://doi.org/10.1007/s11302-006-9016-0
Article PubMed PubMed Central Google Scholar
Lin MM, Liu N, Qin ZH, Wang Y (2022) Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacol Sin 43:2439–2447. https://doi.org/10.1038/s41401-022-00879-6
Article PubMed PubMed Central Google Scholar
Castillo C, Saez-Orellana F, Godoy PA, Fuentealba J (2022) Microglial activation modulated by P2X4R in ischemia and repercussions in Alzheimer’s disease. Front Physiol 13:814999. https://doi.org/10.3389/fphys.2022.814999
Article PubMed PubMed Central Google Scholar
Jarvis MF, Khakh BS (2009) ATP-gated P2X cation-channels. Neuropharmacology 56:208–215. https://doi.org/10.1016/j.neuropharm.2008.06.067
Illes P, Rubini P, Ulrich H et al (2020) Regulation of microglial functions by purinergic mechanisms in the healthy and diseased CNS. Cells 9:1108. https://doi.org/10.3390/cells9051108
Article PubMed PubMed Central Google Scholar
Ni J, Wang P, Zhang J et al (2013) Silencing of the P2X7 receptor enhances amyloid-β phagocytosis by microglia. Biochem Biophys Res Commun 434:363–369. https://doi.org/10.1016/J.BBRC.2013.03.079
Comments (0)