Statistics on working time - ILOSTAT (2024) ILOSTAT. https://ilostat.ilo.org/topics/working-time/
Living and working in Europe (2023) European foundation for the improvement of living and working conditions. https://www.eurofound.europa.eu/en/publications/2024/living-and-working-europe-2023
Working time and work-life balance around the world (an ILO report) (2023) IOE-EMP. https://industrialrelationsnews.ioe-emp.org/industrial-relations-and-labour-law-january-2023/news/article/working-time-and-work-life-balance-around-the-world-an-ilo-report
Olson JA, Artenie DZ, Cyr M, Raz A, Lee V (2019) Developing a light-based intervention to reduce fatigue and improve sleep in rapidly rotating shift workers. Chronobiol Int 37(4):573–591. https://doi.org/10.1080/07420528.2019.1698591
Guénel P, Léger D (2023) Health effects of shift work and night shift work. In Handbook series in occupational health sciences (pp. 245–266). https://doi.org/10.1007/978-3-031-30492-7_19
Boivin DB, Boudreau P, Kosmadopoulos A (2022) Disturbance of the circadian system in shift work and its health impact. J Biol Rhythm 37(1):3–28. https://doi.org/10.1177/07487304211064218
Yong LC, Li J, Calvert GM (2017) Sleep-related problems in th US working populatio. Occu Envi Med 74:93–104. https://doi.org/10.1136/oemed-2016-103638
Lecca R, Puligheddu M, Acar GM, Figorilli M, Congiu P, Gioi G, Loscerbo R, Meloni F, De Matteis S, Cocco P (2021) Shift rotation scheme, sleepiness and sleep quality in night-shift workers. Occup Med 71:446–452. https://doi.org/10.1136/oemed-2016-103638
Leso V, Fontana L, Caturano A, Vetrani I, Fedele M, Iavicoli I (2021) Impact of shift work and long working hours on worker cognitive functions: current evidence and future research needs. J Environ Res Public Health 18:6540. https://doi.org/10.3390/ijerph18126540
Chin BN, Lehrer HM, Tracy EL, Barinas-Mitchell E, Wilckens KA, Carroll LW, Buysse DJ, Hall MH (2023) Cardiometabolic function in retired night shift workers and retired day workers. Sci Rep 13(1). https://doi.org/10.1038/s41598-022-20743-1
Patton AP, Hastings MH, Smyllie NJ (2023) Cells and circuits of the suprachiasmatic nucleus and the control of circadian behaviour and sleep. In: Healthy ageing and longevity, pp 33–70. https://doi.org/10.1007/978-3-031-22468-3_2
Tsuno Y, Peng Y, Horike S, Wang M, Matsui A, Yamagata K, Sugiyama M, Nakamura TJ, Daikoku T, Maejima T, Mieda M (2023) In vivo recording of suprachiasmatic nucleus dynamics reveals a dominant role of arginine vasopressin neurons in circadian pacesetting. PLoS Biology 21(8). https://doi.org/10.1371/journal.pbio.3002281
Hastings MH, Maywood ES, Brancaccio M (2018) Generation of circadian rhythms in the suprachiasmatic nucleus. Nature Reviews. Neuroscience, 19(8), 453–469. https://doi.org/10.1038/s41583-018-0026-z
James S, Honn K, Gaddameedhi S, Van Dongen HPA (2017) Shift work: disrupted circadian rhythms and sleep—implications for health and well-being. Curr Sleep Med Rep 3(2):104–112. https://doi.org/10.1007/s40675-017-0071-6
Article PubMed PubMed Central Google Scholar
Brum MCB, Filho FFD, Schnorr CC, Bottega GB, Rodrigues TC (2015) Shift work and its association with metabolic disorders. Diabetol Metab Syndr 7(1). https://doi.org/10.1186/s13098-015-0041-4
Bolsius YG, Zurbriggen MD, Kim JK, Kas MJ, Meerlo P, Aton SJ, Havekes R (2021) The role of clock genes in sleep, stress and memory. Biochem Pharmacol 191:114493. https://doi.org/10.1016/j.bcp.2021.114493
Article CAS PubMed PubMed Central Google Scholar
Takeda N, Maemura K (2015) The role of clock genes and circadian rhythm in the development of cardiovascular diseases. Cell Mol Life Sci 72(17):3225–3234. https://doi.org/10.1007/s00018-015-1923-1
Article CAS PubMed PubMed Central Google Scholar
Li E, Li X, Huang J, Xu C, Liang Q, Ren K, Bai A, Lu C, Qian R, Sun N (2020) BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy. Protein Cell 11(9):661–679. https://doi.org/10.1007/s13238-020-00713-x
Article CAS PubMed PubMed Central Google Scholar
Eltzschig H, Ruan W, Li T, Lee J, Bang IH, Deng W, Ma X, Yoo S, Kim B, Li J, Yuan X, An Y, Wang Y, Liang Y, Deberge M, Zhang D, Zhou Z, Wang Y, Gorham J, Tsai K (2024) The BMAL1/HIF2A heterodimer modulates circadian variations of myocardial injury. Res Square (Research Square). https://doi.org/10.21203/rs.3.rs-3938716/v1
Sigurdardottir FD, Bertisch S, Reid M, de Filippi CR, Lima JA, Redline S, Omland T (2022) Association between insomnia phenotypes and subclinical myocardial injury: the Multi-Ethnic Study of Atherosclerosis. Sleep 46(4):zsac318. https://doi.org/10.1093/sleep/zsac318
Article PubMed Central Google Scholar
Sigurdardottir FD, Lyngbakken MN, Hveem K, Hrubos-Strøm H, Røsjø H, Redline S, Omland T (2021) Insomnia symptoms and subclinical myocardial injury: Data from the Nord‐Trøndelag Health (HUNT) study. J Sleep Res 30(5):e13299. https://doi.org/10.1111/jsr.13299
Article PubMed PubMed Central Google Scholar
Vandenberghe A, Lefranc M, Furlan A (2022) An overview of the circadian clock in the frame of chronotherapy: from bench to bedside. Pharmaceutics 14(7):1424. https://doi.org/10.3390/pharmaceutics14071424
Article CAS PubMed PubMed Central Google Scholar
Morris CJ, Purvis TE, Mistretta J, Hu K, Scheer FA (2017) Circadian misalignment increases C-Reactive protein and blood pressure in chronic shift workers. J Biol Rhythm 32(2):154–164. https://doi.org/10.1177/0748730417697537
Vetter C, Fischer D, Matera JL, Roenneberg T (2015) Aligning work and circadian time in shift workers improves sleep and reduces circadian disruption. CB/Current Biology 25(7):907–911. https://doi.org/10.1016/j.cub.2015.01.064
Article CAS PubMed Google Scholar
Zhang ZQ, Ding JW, Wang XA, Luo CY, Yu B, Zheng XX, Zhou T, Shang BX, Tong XH, Zhang J (2019) Abnormal circadian rhythms are associated with plaque instability in acute coronary syndrome patients. Int J Clin Exp Pathol 12(10):3761–3771
CAS PubMed PubMed Central Google Scholar
Mongrain V, La Spada F, Curie T, Franken P (2011) Sleep loss reduces the DNA-Binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS ONE 6(10):e26622. https://doi.org/10.1371/journal.pone.0026622
Article CAS PubMed PubMed Central Google Scholar
Wright KP Jr, Bogan RK, Wyatt JK (2013) Shift work and the assessment and management of shift work disorder (SWD). Sleep Med Rev 17(1):41–54
Kecklund G, Axelsson J (2016) Health consequences of shift work and insufficient sleep. BMJ 355:i5210
Hood S, Amir S (2017) The aging clock: circadian rhythms and later life. J Clin Investigation/the J Clin Invest 127(2):437–446. https://doi.org/10.1172/jci90328
Darwish AH, Mahmoud MA, Gadallah AI (2021) The interplay between cognitive impairment and cardiovascular diseases: a focus on neuroendocrine and immune mechanisms. Front Cardiovasc Med 8:676234
Justice NJ (2018) The relationship between stress and Alzheimer’s disease. Neurobiol Stress 8:127–133
Article PubMed PubMed Central Google Scholar
Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330(6009):1349–1354. https://doi.org/10.1126/science.1195027
Article CAS PubMed PubMed Central Google Scholar
Berdina ON, Madaeva IM, Bolshakova SE, Tsykunova MV, Sholokhov LF, Rashidova MA, Bugun OV, Rychkova LV (2020b) Circadian melatonin secretion in obese adolescents with or without obstructive sleep apnea. Russian Open Med J 9(4):e0402. https://doi.org/10.15275/rusomj.2020.0402
Poza J, Pujol M, Ortega-Albás J, Romero O (2020) Melatonin in sleep disorders. Neurología (English Edition) 37(7):575–585. https://doi.org/10.1016/j.nrleng.2018.08.004
Motlaq TM, Rahimi B, Amini S (2024) Effect of melatonin on insomnia and daytime sleepiness, in patients with obstructive sleep apnea and insomnia (COMISA): A randomized double-blinded placebo-controlled trial. J Pharm Health Care Sci 10(1). https://doi.org/10.1186/s40780-024-00347-9
Hernández C, Abreu J, Abreu P, Castro A, Jiménez A (2007) Nocturnal melatonin plasma levels in patients with OSAS: the effect of CPAP. Eur Respir J 30(3):496–500. https://doi.org/10.1183/09031936.00051906
Article CAS PubMed Google Scholar
Martikainen T, Sigurdardottir F, Benedict C, Omland T, Cedernaes J (2022) Effects of curtailed sleep on cardiac stress biomarkers following high-intensity exercise. Mol Metabolism 58:101445. https://doi.org/10.1016/j.molmet.2022.101445
Zeman M, Herichova I (2013) Melatonin and clock genes expression in the cardiovascular system. Front Biosci (Schol Ed) 5(2):743–753
Comments (0)