Development of an efficient indirect somatic embryogenesis and shoot regeneration system for sweet sorghum cultivars using immature inflorescence

Abd El-Raouf M, El-M El Metwally, Bahar Elddin A (2013) Performance of some grain sorghum (Sorghum bicolor l Moench) genotypes under different sowing dates in Egypt. J Plant Prod 4:763–772. https://doi.org/10.21608/jpp.2013.73070

Article  Google Scholar 

Ahmed RI, Rehman SU, Akhtar LH, Khan AM, Mahmood K, Ahmad RT, Anum W (2022) Optimization of in vitro responses of various explants sources in sorghum (Sorghum bicolor). Asian J Agri Biol 2:1–8. https://doi.org/10.35495/ajab.2021.02.102

Article  Google Scholar 

Assem SK, Basry MA, Taha TA, Abd El-Aziz MH, Alwa T, Fouad WM (2023) Development of an in vitro regeneration system from immature inflorescences and CRISPR/Cas9-mediated gene editing in sudangrass. J Genet Eng Biotechnol 21:58. https://doi.org/10.1186/s43141-023-00517-6

Article  PubMed  PubMed Central  Google Scholar 

Assem SK, Zamzam MM, Hussein BA, Hussein EAH (2014) Evaluation of somatic embryogenesis and plant regeneration in tissue culture of ten sorghum (Sorghum bicolor L.) genotypes. Afr J Biotechnol 13:3672–3681. https://doi.org/10.5897/AJB2014.13924

Bakari H, Djomdi RZF, Roger DD, Cedric D, Guillaume P, Pascal D, Philippe M, Gwendoline C (2023) Sorghum (Sorghum bicolor L. Moench) and its main parts (by-products) as promising sustainable sources of value-added ingredients. Waste Biomass Valori 14:1023–1144. https://doi.org/10.1007/s12649-022-01992-7

Article  CAS  Google Scholar 

Belide S, Vanhercke T, Petrie JR, Singh SP (2017) Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. Plant Methods 13:109. https://doi.org/10.1186/s13007-017-0260-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhanupriya C, Kar S (2024) Callus-mediated organogenesis and regeneration of Sorghum bicolor under the influence of natural and synthetic growth regulators. In Vitro Cell Dev Biol - Plant 60:355–364. https://doi.org/10.1007/s11627-024-10427-y

Article  CAS  Google Scholar 

Bhaskaran S, Smith RH (1988) Enhanced somatic embryogenesis in Sorghum bicolor from shoot tip culture. In Vitro Cell Dev Biol - Plant 24:65–70. https://doi.org/10.1007/BF02623817

Article  Google Scholar 

Bhaskaran S, Smith RH (1990) Regeneration in cereal tissue culture: a review. Crop Sci 30:1328–1337. https://doi.org/10.2135/cropsci1990.0011183X003000060034x

Article  CAS  Google Scholar 

Boyes CJ, Vasil IK (1984) Plant regeneration by somatic embryogenesis from cultured young inflorescenses of Sorghum arundinaceum (Desv.) Stapf. Var. Sudanense (Sudan Grass). Plant Sci Lett 35:153–157. https://doi.org/10.1016/0304-4211(84)90189-5

Article  Google Scholar 

Brettell RIS, Wernicke W, Thomas E (1980) Embryogenesis from cultured immature inflorescences of Sorghum bicolor. Protoplasma 104:141–148. https://doi.org/10.1007/BF01279376

Article  Google Scholar 

Cai T, Butler L (1990) Plant regeneration from embryogenic callus initiated from immature inflorescences of several high-tannin sorghums. Plant Cell Tiss Org Cult 20:101–110. https://doi.org/10.1007/BF00114707

Article  Google Scholar 

Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci U S A 90:11212–11216. https://doi.org/10.1073/pnas.90.23.1121

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chege P, Palágyi A, Lantos C, Kiss E, Pauk J (2020) Improved culture media for embryogenic callus generation in sorghum [Sorghum bicolor (L.) Moench]. Phyton-Int J Exp Bot 89:111–119

Google Scholar 

Cheng YW, Deng W, Lu YL, Han SP, Lv Y, Zeng GJ, Zhou C, Zhang DC, Shen XL (2020) Establishment of sorghum BTx623 immature embryos genetic transformation and regeneration system. Mol Plant Breed 11:1–8. https://doi.org/10.5376/mpb.2020.11.0005

Article  CAS  Google Scholar 

Dicko M, Gruppen H, Traore A, Voragen A, Berkel W (2006) Sorghum grain as human food in Africa: relevance of content of starch and amylase activities. Afr J Biotechnol 5:384–395. https://www.ajol.info/index.php/ajb/article/view/137858. Accessed 10 Jul 2024

Dreger M, Mól R, Deja A, Raj E, Mańkowska G, Wielgus K (2019) Improved plant regeneration in callus cultures of Sorghum bicolor (L.) Moench. In Vitro Cell Dev Biol - Plant 55:190–198. https://doi.org/10.1007/s11627-019-09963-9

Article  CAS  Google Scholar 

Elasraag YH (2023) Analysis of sorghum production costs in Egypt. SVU-Int J Agr Sci 5:131–36. https://doi.org/10.21608/svuijas.2023.200213.1278

Article  Google Scholar 

Elkonin LA, Lopushanskaya RF, Pakhomova NV (1995) Initiation and maintenance of friable, embryogenic callus of sorghum (Sorghum bicolor (L.) Moench by amino acids. Maydica 40:153–157. https://eurekamag.com/research/002/641/002641154.php. Accessed 5 Apr 2024

Ezzat EM, Ali MA, Mahmoud AM (2010) Agronomic performance, genotype X environment interactions and stability analysis of grain sorghum (Sorghum bicolor L. Moench). Asian J Crop Sci 2:250–260. https://scialert.net/fulltext/fulltextpdf.php?pdf=ansinet/ajcs/2010/250-260.pdf. Accessed 15 Sep 2024

Fernie AR, Bauwe H (2020) Wasteful, essential, evolutionary stepping stone? The multiple personalities of the photorespiratory pathway. Plant J 102:666–677. https://doi.org/10.1111/tpj.14669

Article  CAS  PubMed  Google Scholar 

Flinn B, Dale S, Disharoon A, Kresovich S (2020) Comparative analysis of in vitro responses and regeneration between diverse bioenergy sorghum genotypes. Plants 9:248. https://doi.org/10.3390/plants9020248

Article  PubMed  PubMed Central  Google Scholar 

Fransz PF, Schel JHN (1991) Cytodifferentiation during the development of friable embryogenic callus of maize (Zea mays). Canad J Bot 69:26–33. https://doi.org/10.1139/b91-005

Article  Google Scholar 

George L, Eapen S, Rao PS (1989) High frequency somatic embryogenesis and plant regeneration from immature inflorescence cultures of two Indian cultivars of sorghum (Sorghum bicolor L. Moench). Proc. Indian Acad. Sci. (Plant Sci.) 99:405–410. https://www.ias.ac.in/public/Volumes/plnt/099/05/0405-0410.pdf. Accessed 15 Mar 2024

Grootboom AW, Mkhonza NL, O’Kennedy MO, Chakauya E, Kunert K, Chikwamba RK (2010). Biolistic mediated sorghum (Sorghum bicolor L. Moench) transformation via mannose and bialaphos based selection systems. Int J Bot 6:89–94. https://researchspace.csir.co.za/dspace/handle/10204/4192. Accessed 20 June 2024

Gupta S, Khanna VK, Singh R, Garg GK (2004) Identification of in vitro responsive immature embryo size for plant regeneration in Sudan grass (Sorghum sudanenses Piper). Indian J Biotechnol 3:124–127. https://nopr.niscpr.res.in/bitstream/123456789/5839/1/IJBT%203%281%29%20124-127.pdf. Accessed 20 June 2024

Gupta S, Khanna VK, Singh R, Garg GK (2006) Strategies for overcoming genotypic limitations of in vitro regeneration and determination of genetic components of variability of plant regeneration traits in sorghum. Plant Cell Tiss Org Cult 86:379–388. https://doi.org/10.1007/s11240-006-9140-0

Article  Google Scholar 

Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan HQ, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28:429–444. https://doi.org/10.1007/s00299-008-0655-1

Article  CAS  PubMed  Google Scholar 

Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834. https://doi.org/10.1038/nprot.2008.46

Article  CAS  PubMed  Google Scholar 

Ibrahim AS, El-Shihy OM, Husseın A (2010) Highly efficient Agrobacterium tumefaciens-mediated transformation of elite Egyptian barley cultivars. Am-Eurasian J Sustain Agric 4:403–413. https://www.aensiweb.net/AENSIWEB/aejsa/aejsa/2010/403-413.pdf. Accessed 9 Jul 2024

Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2:1614–1621. https://doi.org/10.1038/nprot.2007.241

Article  CAS  PubMed  Google Scholar 

Jogeswar G, Ranadheer D, Anjaiah V, Kavi Kishor PB (2007) High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants. In Vitro Cell Dev Biol - Plant 43:159–166. https://doi.org/10.1007/s11627-007-9033-x

Article  Google Scholar 

Liu G, Gilding EK, Godwin ID (2015) A robust tissue culture system for sorghum [Sorghum bicolor (L.) Moench]. S Afr J Bot 98:157–160. https://doi.org/10.1016/j.sajb.2015.03.179

Article  CAS  Google Scholar 

Maralappanavar MS, Kuruvinashetti M, Harti CC (2000) Regeneration, establishment and evaluation of somaclones in Sorghum bicolor (L.) Moench. Euphytica 115:173–180. https://doi.org/10.1023/A:1004010315991

Article  CAS  Google Scholar 

Mathur S, Umakanth AV, Tonapi VA, Sharma R, Sharma MK (2017) Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnol Biofuels 10:146. https://doi.org/10.1186/s13068-017-0834-9

Article  PubMed  PubMed Central  Google Scholar 

Medina SM, Collado R, Barbón R, Rodríguez M, Pérez M, Tejada M, Rojas L, Daniels DD, Roque B, Torres D, Maroto LO, Vitlloch AL, Gómez Kosky R (2015) Novel explant for somatic embryogenesis in Sorghum bicolor (L.) Mohen. Biot Veg 15:163–175. https://biblat.unam.mx/hevila/Biotecnologiavegetal/2015/vol15/no3/6.pdf. Accessed 12 Mar 2024

Miller S, Rønager A, Holm R, Fontanet-Manzaneque JB, Caño-Delgado AI, Bjarnholt N (2023) New methods for sorghum transformation in temperate climates. AoB Plants 15:plad030. https://doi.org/10.1093/aobpla/plad030

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra A, Khurana P (2003) Genotype dependent somatic embryogenesis and regeneration from leaf base cultures of Sorghum bicolor. J Plant Biochem Biotechnol 12:53–56. https://doi.org/10.1007/BF03263160

Article  Google Scholar 

Mundia CW, Secchi S, Akamani K, Wang G (2019) A regional comparison of factors affecting global sor

Comments (0)

No login
gif