The influences of ARHGEF9 on myoblasts migration and differentiation

Amano O, Yamane A, Shimada M, Koshimizu U, Nakamura T, Iseki S (2002) Hepatocyte growth factor is essential for migration of myogenic cells and promotes their proliferation during the early periods of tongue morphogenesis in mouse embryos. Dev Dyn 223(2):169–179. https://doi.org/10.1002/dvdy.1228

Article  CAS  PubMed  Google Scholar 

Bousgouni V, Inge O, Robertson D, Jones I, Clatworthy I, Bakal C (2022) ARHGEF9 regulates melanoma morphogenesis in environments with diverse geometry and elasticity by promoting filopodial-driven adhesion. iScience 25(8):104795. https://doi.org/10.1016/j.isci.2022.104795

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burridge K, Fath K, Kelly T, Nuckolls G, Turner C (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biology 4:487–525. https://doi.org/10.1146/annurev.cb.04.110188.002415

Article  CAS  Google Scholar 

Cao L, Ghasemi F, Way M, Jégou A, Romet-Lemonne G (2023) Regulation of branched versus linear Arp2/3-generated actin filaments. EMBO J 42(9):e113008. https://doi.org/10.15252/embj.2022113008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi S, Ferrari G, Tedesco FS (2020) Cellular dynamics of myogenic cell migration: molecular mechanisms and implications for skeletal muscle cell therapies. EMBO Mol Med 12(12):e12357. https://doi.org/10.15252/emmm.202012357

Article  CAS  PubMed  PubMed Central  Google Scholar 

Etienne-Manneville S, Hall A (2022) Rho GTPases in cell biology. Nature 420(6916):629–635. https://doi.org/10.1038/nature01148

Article  CAS  Google Scholar 

Guo Y, Negre J, Eitzen G (2023) GEF-H1 transduces FcεRI signaling in mast cells to activate RhoA and focal adhesion formation during Exocytosis. Cells 12(4):537. https://doi.org/10.3390/cells12040537

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hagel M, George EL, Kim A, Tamimi R, Opitz SL, Turner CE, Imamoto A, Thomas SM (2002) The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 22(3):901–915. https://doi.org/10.1128/MCB.22.3.901-915.2002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ibaraki K, Mizuno M, Aoki H, Niwa A, Iwamoto I, Hara A, Tabata H, Ito H, Nagata KI (2018) Biochemical and morphological characterization of a guanine Nucleotide Exchange factor ARHGEF9 in mouse tissues. Acta Histochem Cytochem 51(3):119–128. https://doi.org/10.1267/ahc.18009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marco EJ, Abidi FE, Bristow J, Dean WB, Cotter P, Jeremy RJ, Schwartz CE, Sherr EH (2008) ARHGEF9 disruption in a female patient is associated with X linked mental retardation and sensory hyperarousal. J Med Genet 45(2):100–105. https://doi.org/10.1136/jmg.2007.052324

Article  CAS  PubMed  Google Scholar 

Mizukawa B, O’Brien E, Moreira DC, Wunderlich M, Hochstetler CL, Duan X, Liu W, Orr E, Grimes HL, Mulloy JC, Zheng Y (2017) The cell polarity determinant CDC42 controls division symmetry to block leukemia cell differentiation. Blood 30(11):1336–1346. https://doi.org/10.1182/blood-2016-12-758458

Article  CAS  Google Scholar 

Narumiya S, Thumkeo D (2018) Rho signaling research: history, current status and future directions. FEBS Lett 592(11):1763–1776. https://doi.org/10.1002/1873-3468.13087

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roman W, Pinheiro H, Pimentel MR, Segalés J, Oliveira LM, García-Domínguez E, Gómez-Cabrera MC, Serrano AL, Gomes ER, Muñoz-Cánoves P (2021) Muscle repair after physiological damage relies on nuclear migration for cellular reconstruction. Science 374(6565):355–359. https://doi.org/10.1126/science.abe5620

Article  CAS  PubMed  Google Scholar 

Salat-Canela C, Carmona M, Martín-García R, Pérez P, Ayté J, Hidalgo E (2021) Stress-dependent inhibition of polarized cell growth through unbalancing the GEF/GAP regulation of Cdc42. Cell Rep 37(5):109951. https://doi.org/10.1016/j.celrep.2021.109951

Article  CAS  PubMed  Google Scholar 

Simon S, Schell U, Heuer N, Hager D, Albers MF, Matthias J, Fahrnbauer F, Trauner D, Eichinger L, Hedberg C, Hilbi H (2015) Inter-kingdom signaling by the Legionella Quorum sensing molecule LAI-1 modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent pathway. PLoS Pathog 11(12):e1005307. https://doi.org/10.1371/journal.ppat.1005307

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tidball JG (2011) Mechanisms of muscle injury, repair, and regeneration. Compr Physiol 1(4):2029–2062. https://doi.org/10.1002/cphy.c100092

Article  PubMed  Google Scholar 

Tong HL, Yin HY, Zhang WW, Hu Q, Li SF, Yan YQ, Li GP (2015) Transcriptional profiling of bovine muscle-derived satellite cells during differentiation in vitro by high throughput RNA sequencing. Cell Mol Biol Lett 20(3):351–373. https://doi.org/10.1515/cmble-2015-0019

Article  CAS  PubMed  Google Scholar 

Wirth A, Ponimaskin E (2023) Lipidation of small GTPase Cdc42 as regulator of its physiological and pathophysiological functions. Front Physiol 13:1088840. https://doi.org/10.3389/fphys.2022.1088840

Article  PubMed  PubMed Central  Google Scholar 

Yang G, Li J, Liu Y, Wu G, Mo L, Xu Z, Liao Y, Huang Q, Yang P (2023) Targeting the RhoA-GEF-H1 pathway of mast cells attenuates experimental airway allergy. Arch Biochem Biophys 741:109597. https://doi.org/10.1016/j.abb.2023.109597

Article  CAS  PubMed  Google Scholar 

You JS, Singh N, Reyes-Ordonez A, Khanna N, Bao Z, Zhao H, Chen J (2021) ARHGEF3 regulates skeletal muscle regeneration and strength through autophagy. Cell Rep 34(6):108731. https://doi.org/10.1016/j.celrep.2021.108731

Article  CAS  PubMed  Google Scholar 

Yue B, Wu J, Wang Y, Zhang C, Fang X, Chen H (2017) Expression profiles analysis and functional characterization of MicroRNA-660 in skeletal muscle differentiation. J Cell Biochem 118(8):2387–2394. https://doi.org/10.1002/jcb.25901

Article  CAS  Google Scholar 

Zanou N, Gailly P (2013) Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell Mol Life Sci 70(21):4117–4130. https://doi.org/10.1007/s00018-013-1330-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif