Amano O, Yamane A, Shimada M, Koshimizu U, Nakamura T, Iseki S (2002) Hepatocyte growth factor is essential for migration of myogenic cells and promotes their proliferation during the early periods of tongue morphogenesis in mouse embryos. Dev Dyn 223(2):169–179. https://doi.org/10.1002/dvdy.1228
Article CAS PubMed Google Scholar
Bousgouni V, Inge O, Robertson D, Jones I, Clatworthy I, Bakal C (2022) ARHGEF9 regulates melanoma morphogenesis in environments with diverse geometry and elasticity by promoting filopodial-driven adhesion. iScience 25(8):104795. https://doi.org/10.1016/j.isci.2022.104795
Article CAS PubMed PubMed Central Google Scholar
Burridge K, Fath K, Kelly T, Nuckolls G, Turner C (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biology 4:487–525. https://doi.org/10.1146/annurev.cb.04.110188.002415
Cao L, Ghasemi F, Way M, Jégou A, Romet-Lemonne G (2023) Regulation of branched versus linear Arp2/3-generated actin filaments. EMBO J 42(9):e113008. https://doi.org/10.15252/embj.2022113008
Article CAS PubMed PubMed Central Google Scholar
Choi S, Ferrari G, Tedesco FS (2020) Cellular dynamics of myogenic cell migration: molecular mechanisms and implications for skeletal muscle cell therapies. EMBO Mol Med 12(12):e12357. https://doi.org/10.15252/emmm.202012357
Article CAS PubMed PubMed Central Google Scholar
Etienne-Manneville S, Hall A (2022) Rho GTPases in cell biology. Nature 420(6916):629–635. https://doi.org/10.1038/nature01148
Guo Y, Negre J, Eitzen G (2023) GEF-H1 transduces FcεRI signaling in mast cells to activate RhoA and focal adhesion formation during Exocytosis. Cells 12(4):537. https://doi.org/10.3390/cells12040537
Article CAS PubMed PubMed Central Google Scholar
Hagel M, George EL, Kim A, Tamimi R, Opitz SL, Turner CE, Imamoto A, Thomas SM (2002) The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 22(3):901–915. https://doi.org/10.1128/MCB.22.3.901-915.2002
Article CAS PubMed PubMed Central Google Scholar
Ibaraki K, Mizuno M, Aoki H, Niwa A, Iwamoto I, Hara A, Tabata H, Ito H, Nagata KI (2018) Biochemical and morphological characterization of a guanine Nucleotide Exchange factor ARHGEF9 in mouse tissues. Acta Histochem Cytochem 51(3):119–128. https://doi.org/10.1267/ahc.18009
Article CAS PubMed PubMed Central Google Scholar
Marco EJ, Abidi FE, Bristow J, Dean WB, Cotter P, Jeremy RJ, Schwartz CE, Sherr EH (2008) ARHGEF9 disruption in a female patient is associated with X linked mental retardation and sensory hyperarousal. J Med Genet 45(2):100–105. https://doi.org/10.1136/jmg.2007.052324
Article CAS PubMed Google Scholar
Mizukawa B, O’Brien E, Moreira DC, Wunderlich M, Hochstetler CL, Duan X, Liu W, Orr E, Grimes HL, Mulloy JC, Zheng Y (2017) The cell polarity determinant CDC42 controls division symmetry to block leukemia cell differentiation. Blood 30(11):1336–1346. https://doi.org/10.1182/blood-2016-12-758458
Narumiya S, Thumkeo D (2018) Rho signaling research: history, current status and future directions. FEBS Lett 592(11):1763–1776. https://doi.org/10.1002/1873-3468.13087
Article CAS PubMed PubMed Central Google Scholar
Roman W, Pinheiro H, Pimentel MR, Segalés J, Oliveira LM, García-Domínguez E, Gómez-Cabrera MC, Serrano AL, Gomes ER, Muñoz-Cánoves P (2021) Muscle repair after physiological damage relies on nuclear migration for cellular reconstruction. Science 374(6565):355–359. https://doi.org/10.1126/science.abe5620
Article CAS PubMed Google Scholar
Salat-Canela C, Carmona M, Martín-García R, Pérez P, Ayté J, Hidalgo E (2021) Stress-dependent inhibition of polarized cell growth through unbalancing the GEF/GAP regulation of Cdc42. Cell Rep 37(5):109951. https://doi.org/10.1016/j.celrep.2021.109951
Article CAS PubMed Google Scholar
Simon S, Schell U, Heuer N, Hager D, Albers MF, Matthias J, Fahrnbauer F, Trauner D, Eichinger L, Hedberg C, Hilbi H (2015) Inter-kingdom signaling by the Legionella Quorum sensing molecule LAI-1 modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent pathway. PLoS Pathog 11(12):e1005307. https://doi.org/10.1371/journal.ppat.1005307
Article CAS PubMed PubMed Central Google Scholar
Tidball JG (2011) Mechanisms of muscle injury, repair, and regeneration. Compr Physiol 1(4):2029–2062. https://doi.org/10.1002/cphy.c100092
Tong HL, Yin HY, Zhang WW, Hu Q, Li SF, Yan YQ, Li GP (2015) Transcriptional profiling of bovine muscle-derived satellite cells during differentiation in vitro by high throughput RNA sequencing. Cell Mol Biol Lett 20(3):351–373. https://doi.org/10.1515/cmble-2015-0019
Article CAS PubMed Google Scholar
Wirth A, Ponimaskin E (2023) Lipidation of small GTPase Cdc42 as regulator of its physiological and pathophysiological functions. Front Physiol 13:1088840. https://doi.org/10.3389/fphys.2022.1088840
Article PubMed PubMed Central Google Scholar
Yang G, Li J, Liu Y, Wu G, Mo L, Xu Z, Liao Y, Huang Q, Yang P (2023) Targeting the RhoA-GEF-H1 pathway of mast cells attenuates experimental airway allergy. Arch Biochem Biophys 741:109597. https://doi.org/10.1016/j.abb.2023.109597
Article CAS PubMed Google Scholar
You JS, Singh N, Reyes-Ordonez A, Khanna N, Bao Z, Zhao H, Chen J (2021) ARHGEF3 regulates skeletal muscle regeneration and strength through autophagy. Cell Rep 34(6):108731. https://doi.org/10.1016/j.celrep.2021.108731
Article CAS PubMed Google Scholar
Yue B, Wu J, Wang Y, Zhang C, Fang X, Chen H (2017) Expression profiles analysis and functional characterization of MicroRNA-660 in skeletal muscle differentiation. J Cell Biochem 118(8):2387–2394. https://doi.org/10.1002/jcb.25901
Zanou N, Gailly P (2013) Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell Mol Life Sci 70(21):4117–4130. https://doi.org/10.1007/s00018-013-1330-4
Comments (0)