Fluorescence lifetime imaging microscopy of endogenous fluorophores in health and disease

Ahmad R, Galletly NP, Thillainayagam AV et al (2010) Wide-field fluorescence lifetime imaging of cancer. Biomed Opt Express 1:627–640. https://doi.org/10.1364/BOE.1.000627

Article  PubMed  PubMed Central  Google Scholar 

Alam SR, Wallrabe H, Svindrych Z et al (2017) Investigation of mitochondrial metabolic response to doxorubicin in prostate Cancer cells: an NADH, FAD and Tryptophan FLIM Assay. Sci Rep 7:104511–104510. https://doi.org/10.1038/s41598-017-10856-3

Article  CAS  Google Scholar 

Bec J, Vela D, Phipps JE et al (2021) Label-free visualization and quantification of biochemical markers of atherosclerotic plaque progression using intravascular fluorescence lifetime. JACC Cardiovasc Imaging 14:1832–1842. https://doi.org/10.1016/J.JCMG.2020.10.004

Article  PubMed  Google Scholar 

Becker W (2005) Advanced Time-correlated single photon counting techniques. Springer Berlin Heidelberg, Berlin, Heidelberg

Book  Google Scholar 

Becker W (2012) Fluorescence lifetime imaging - techniques and applications. J Microsc 247:119–136. https://doi.org/10.1111/j.1365-2818.2012.03618.x

Article  PubMed  CAS  Google Scholar 

Becker W (2014) The Bh TCSPC Handbook, 6th edn. Becker & Hickl GmbH, Berlin, Germany

Google Scholar 

Becker W (2015) Advanced Time-correlated single photon counting applications. Springer International Publishing, Cham, Switzerland

Book  Google Scholar 

Becker W, Braun L, Suarez-Ibarrol R, Miernik A (2020) Metabolic imaging by simultaneous FLIM of NAD(P)H and FAD. Curr Dir Biomed Eng 6:0–2. https://doi.org/10.1515/cdbme-2020-3064

Article  CAS  Google Scholar 

Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684. https://doi.org/10.1021/cr900343z

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bird DK, Yan L, Vrotsos KM et al (2005) Metabolic mapping of MCF10A human breast cells via Multiphoton Fluorescence Lifetime Imaging of the Coenzyme NADH. Cancer Res 65:8766–8773. https://doi.org/10.1158/0008-5472.CAN-04-3922

Article  PubMed  CAS  Google Scholar 

Blacker TS, Duchen MR (2016) Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 100:53–65. https://doi.org/10.1016/j.freeradbiomed.2016.08.010

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blacker TS, Mann ZF, Gale JE et al (2014) Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun 5:1–9. https://doi.org/10.1038/ncomms4936

Article  CAS  Google Scholar 

Blacker TS, Duchen MR, Bain AJ (2023) NAD(P)H binding configurations revealed by time-resolved fluorescence and two-photon absorption. Biophys J 122:1240–1253. https://doi.org/10.1016/j.bpj.2023.02.014

Article  PubMed  PubMed Central  CAS  Google Scholar 

Booth MJ, Wilson T (2004) Low-cost, frequency-domain, fluorescence lifetime confocal microscopy. J Microsc 214:36–42. https://doi.org/10.1111/J.0022-2720.2004.01316.X

Article  PubMed  CAS  Google Scholar 

Brandao M, Iwakura R, Basilio F et al (2015) Fluorescence lifetime of normal, benign, and malignant thyroid tissues. J Biomed Opt 20. https://doi.org/10.1117/1.JBO.20.6.067003. 067003/1–6

Brooks GA (2002) Lactate shuttles in Nature. Biochem Soc Trans 30:258–264. https://doi.org/10.1042/BST0300258

Article  PubMed  CAS  Google Scholar 

Butte PV, Fang Q, Jo JA et al (2010) Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy. J Biomed Opt 15:0270081–0270088. https://doi.org/10.1117/1.3374049

Article  CAS  Google Scholar 

Cao R, Wallrabe H, Siller K et al (2019) Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H. Cytom Part A 95:110–121. https://doi.org/10.1002/cyto.a.23711

Article  CAS  Google Scholar 

Cao R, Wallrabe H, Periasamy A (2020a) Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength. J Biomed Opt 25:1–16. https://doi.org/10.1117/1.jbo.25.1.014510

Article  PubMed  CAS  Google Scholar 

Cao R, Wallrabe H, Siller K, Periasamy A (2020b) Optimization of FLIM imaging, fitting and analysis for auto-fluorescent NAD(P)H and FAD in cells and tissues. Methods Appl Fluoresc 8:1–12. https://doi.org/10.1088/2050-6120/ab6f25

Article  CAS  Google Scholar 

Chance B (1976) Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria. Circ Res 38:I31–I38. https://doi.org/https://pubmed.ncbi.nlm.nih.gov/178460/

PubMed  CAS  Google Scholar 

Chance B, Cohen P, Jobsis F, Schoener B (1962) Intracellular oxidation-reduction states in vivo. Science 137:499–508. https://doi.org/10.1126/SCIENCE.137.3529.499

Article  PubMed  CAS  Google Scholar 

Chance B, Schoener B, Oshino R et al (1979) Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem 254:4764–4771. https://doi.org/10.1016/S0021-9258(17)30079-0

Article  PubMed  CAS  Google Scholar 

Chen H, Wang C, Wei X et al (2015) Malate-aspartate shuttle inhibitor aminooxyacetate acid induces apoptosis and impairs Energy Metabolism of both resting Microglia and LPS-Activated Microglia. Neurochem Res 40:1311–1318. https://doi.org/10.1007/S11064-015-1589-Y

Article  PubMed  CAS  Google Scholar 

Cheng Y, Mateasik A, Poirier N et al (2009) Analysis of NAD(P)H fluorescence components in cardiac myocytes from human biopsies: a new tool to improve diagnostics of rejection of transplanted patients. Multiphot Microsc Biomed Sci IX 7183:1–8. https://doi.org/10.1117/12.808001

Article  Google Scholar 

Chorvat D, Chorvatova A (2006) Spectrally resolved time-correlated single photon counting: a novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes. Eur Biophys J 36:73–83. https://doi.org/10.1007/S00249-006-0104-4

Article  PubMed  Google Scholar 

Curtabbi A, Enríquez JA (2022) The ins and outs of the flavin mononucleotide cofactor of respiratory complex I. IUBMB Life 74:629–644. https://doi.org/10.1002/IUB.2600

Article  PubMed  CAS  Google Scholar 

Datta R, Alfonso-Garciá A, Cinco R, Gratton E (2015) Fluorescence lifetime imaging of endogenous biomarker of oxidative stress. Sci Rep 5:98481–98410. https://doi.org/10.1038/SREP09848

Article  Google Scholar 

Datta R, Heylman C, George SC, Gratton E (2016) Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes. Biomed Opt Express 7:1690–1701. https://doi.org/10.1364/BOE.7.001690

Article  PubMed  PubMed Central  CAS  Google Scholar 

Datta R, Heaster TM, Sharick JT et al (2020) Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J Biomed Opt 25:0712031–0712043. https://doi.org/10.1117/1.jbo.25.7.071203

Article  CAS  Google Scholar 

Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16. https://doi.org/10.1529/biophysj.107.120154

Article  PubMed  CAS  Google Scholar 

Drössler P, Holzer W, Penzkofer A, Hegemann P (2002) pH dependence of the absorption and emission behaviour of riboflavin in aqueous solution. Chem Phys 282:429–439. https://doi.org/10.1016/S0301-0104(02)00731-0

Article  Google Scholar 

Eggert D, Gaertner D, Rühm A et al (2024) Differentiation of tumors of the Upper Respiratory Tract using Optical metabolic imaging. Lasers Surg Med. https://doi.org/10.1002/lsm.23870

Article  PubMed 

Comments (0)

No login
gif