Predicting high-risk clinical missense variants of SMARCB1 in rare neurogenetic disorder schwannomatosis (nerve tumor) through sequence, structure, and molecular dynamics analyses

Wick A, Plotkin S (2018) Neurofibromatosis and schwannomatosis. Semin Neurol 38(01):073–085. https://doi.org/10.1055/s-0038-1627471

Article  Google Scholar 

Kehrer-Sawatzki H, Farschtschi S, Mautner V-F, Cooper DN (2017) The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. Hum Genet 136(2):129–148. https://doi.org/10.1007/s00439-016-1753-8

Article  CAS  PubMed  Google Scholar 

Li Y, Chen L, Shao D, Zhang B, Xie S, Zheng X et al (2022) Hereditary intraspinal schwannomatosis with SMARCB1 gene mutation: a case report. J Clin Lab Anal 36(6):e24448. https://doi.org/10.1002/jcla.24448

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tamura R (2021) Current understanding of neurofibromatosis type 1, 2, and schwannomatosis. Int J Mol Sci 22(11):5850. https://doi.org/10.3390/ijms22115850

Article  CAS  PubMed  PubMed Central  Google Scholar 

Merker VL, Esparza S, Smith MJ, Stemmer-Rachamimov A, Plotkin SR (2012) Clinical features of schwannomatosis: a retrospective analysis of 87 patients. Oncologist 17(10):1317–1322. https://doi.org/10.1634/theoncologist.2012-0162

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perez-Becerril C, Wallace AJ, Schlecht H, Bowers NL, Smith PT, Gokhale C et al (2022) Screening of potential novel candidate genes in schwannomatosis patients. Hum Mutat 43(10):1368–1376. https://doi.org/10.1002/humu.24424

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alaidarous A, Parfait B, Ferkal S, Cohen J, Wolkenstein P, Mazereeuw-Hautier J (2019) Segmental schwannomatosis: characteristics in 12 patients. Orphanet J Rare Dis 14(1):207. https://doi.org/10.1186/s13023-019-1176-4

Article  PubMed  PubMed Central  Google Scholar 

Pawel BR (2018) SMARCB1-deficient Tumors of Childhood: A Practical Guide. Pediatr Dev Pathol 21(1):6–28. https://doi.org/10.1177/1093526617749671

Article  PubMed  Google Scholar 

Cooper GW, Hong AL (2022) SMARCB1-deficient cancers: Novel molecular insights and therapeutic vulnerabilities. Cancers (Basel) 14(15):3645 (https://www.mdpi.com/2072-6694/14/15/3645)

Article  CAS  PubMed  Google Scholar 

Chabanon RM, Morel D, Postel-Vinay S (2020) Exploiting epigenetic vulnerabilities in solid tumors: Novel therapeutic opportunities in the treatment of SWI/SNF-defective cancers. Semin Cancer Biol 61:180–198. https://doi.org/10.1016/j.semcancer.2019.09.018

Article  CAS  PubMed  Google Scholar 

Schaefer I-M, Hornick JL (2021) SWI/SNF complex-deficient soft tissue neoplasms: An update. Semin Diagn Pathol 38(3):222–231. https://doi.org/10.1053/j.semdp.2020.05.005

Article  PubMed  Google Scholar 

Lorca MC, Huang J, Schafernak K, Biyyam D, Stanescu AL, Hull NC et al (2024) Malignant rhabdoid tumor and related pediatric tumors: Multimodality imaging review with pathologic correlation. Radiographics 44(8):e240015. https://doi.org/10.1148/rg.240015

Article  PubMed  Google Scholar 

Baldo D, Carta G, Alessi R, Merli I, Agolini P, Rinelli E et al (2021) Rhabdoid tumor predisposition syndrome: from clinical suspicion to general management. Front Oncol 11:586288

Article  PubMed  PubMed Central  Google Scholar 

Savio D, Maestro E (2022) Beyond SMARCB1 loss: recent insights into the pathobiology of epithelioid sarcoma. Cells 11:2626

Article  PubMed  PubMed Central  Google Scholar 

Grünewald TGP, Postel-Vinay S, Nakayama RT, Berlow NE, Bolzicco A, Cerullo V et al (2024) Translational aspects of epithelioid sarcoma: Current consensus. Clin Cancer Res 30(6):1079–1092. https://doi.org/10.1158/1078-0432.CCR-23-2174

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Yang X, Zhu W, Xu Y, Ma J, He C et al (2022) SWI/SNF complex gene variations are associated with a higher tumor mutational burden and a better response to immune checkpoint inhibitor treatment: a pan-cancer analysis of next-generation sequencing data corresponding to 4591 cases. Cancer Cell Int 22(1):347. https://doi.org/10.1186/s12935-022-02757-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wanarase SR, Chavan SV, Sharma S (2023) Evaluation of SNPs from human IGFBP6 associated with gene expression: an in-silico study. J Biomol Struct Dyn 41(23):13937–49. https://doi.org/10.1080/07391102.2023.2192793

Article  CAS  PubMed  Google Scholar 

Thote V, Dinesh S, Sharma S (2024) Prediction of deleterious non-synonymous SNPs of human MDC1 gene: an in silico approach. Syst Biol Reprod Med 70(1):101–112. https://doi.org/10.1080/19396368.2024.2325699

Article  CAS  PubMed  Google Scholar 

Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311. https://doi.org/10.1093/nar/29.1.308

Article  CAS  PubMed  PubMed Central  Google Scholar 

UniProt Consortium (2023) UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res 51(D1):D523–D531. https://doi.org/10.1093/nar/gkac1052

Article  CAS  Google Scholar 

Bhor S, Tonny SH, Dinesh S, Sharma S (2024) Computational screening of damaging nsSNPs in human SOD1 genes associated with amyotrophic lateral sclerosis identifies destabilising effects of G38R and G42D mutations through in silico evaluation. In Silico Pharmacol 12(1):20. https://doi.org/10.1007/s40203-024-00191-7

Article  PubMed  Google Scholar 

Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 7(1):7–20. https://doi.org/10.1002/0471142905.hg0720s76

Article  Google Scholar 

Hoda A, LikaÇekani M, Kolaneci V (2023) Identification of deleterious nsSNPs in human HGF gene: in silico approach. J Biomol Struct Dyn 41(21):11889–11903. https://doi.org/10.1080/07391102.2022.2164060

Article  CAS  PubMed  Google Scholar 

Rogers MF, Shihab HA, Mort M, Cooper DN, Gaunt TR, Campbell C (2018) FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. Bioinformatics 34(3):511–513. https://doi.org/10.1093/bioinformatics/btx536

Article  CAS  PubMed  Google Scholar 

Al-Ayari EA, Shehata MG, El-Hadidi M, Shaalan MG (2023) In silico SNP prediction of selected protein orthologues in insect models for Alzheimer’s, Parkinson’s, and Huntington’s diseases. Sci Rep 13(1):18986. https://doi.org/10.1038/s41598-023-46250-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 35(11):3823–3835. https://doi.org/10.1093/nar/gkm238

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang H, Thomas PD (2016) PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics 32(14):2230–2232. https://doi.org/10.1093/bioinformatics/btw222

Article  CAS  PubMed  Google Scholar 

Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40(Web Server issue):W452-7. https://doi.org/10.1093/nar/gks539

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif