polyglutamine intermediate repeats length expansions in Malaysian patients with amyotrophic lateral sclerosis (ALS)

Brown RHJ, Al-Chalabi A (2017) Amyotroph Lateral Scler N Engl J Med 377(16):1602

Google Scholar 

Byrne S et al (2011) Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 82(6):623–627

Article  PubMed  Google Scholar 

Al-Chalabi A, van den Berg LH, Veldink J (2017) Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol 13(2):96–104

Article  PubMed  CAS  Google Scholar 

Goutman SA et al (2022) Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol 21(5):465–479

Article  PubMed  PubMed Central  CAS  Google Scholar 

Perrone B, Conforti FL (2020) Common mutations of interest in the diagnosis of amyotrophic lateral sclerosis: how common are common mutations in ALS genes? Expert Rev Mol Diagn 20(7):703–714

Article  PubMed  CAS  Google Scholar 

Abel O et al (2012) ALSoD: a user-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Hum Mutat 33(9):1345–1351

Article  PubMed  CAS  Google Scholar 

van Rheenen W et al (2021) Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet 53(12):1636–1648

Article  PubMed  PubMed Central  Google Scholar 

Zou ZY et al (2017) Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 88(7):540–549

Article  PubMed  Google Scholar 

Pulst SM (2018) The complex structure of ATXN2 genetic variation. Neurol Genet 4(6):e299

Article  PubMed  PubMed Central  CAS  Google Scholar 

Elden AC et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466(7310):1069–1075

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sproviero W et al (2017) ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiol Aging 51:178e1–178e9

Article  Google Scholar 

Dansithong W et al (2015) Ataxin-2 regulates RGS8 translation in a new BAC-SCA2 transgenic mouse model. PLoS Genet 11(4):e1005182

Article  PubMed  PubMed Central  Google Scholar 

Zhang K et al (2018) Stress Granule Assembly disrupts nucleocytoplasmic transport. Cell 173(4):958–971e17

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bonini NM, Gitler AD (2011) Model organisms reveal insight into human neurodegenerative disease: ataxin-2 intermediate-length polyglutamine expansions are a risk factor for ALS. J Mol Neurosci 45(3):676–683

Article  PubMed  PubMed Central  CAS  Google Scholar 

Farg MA et al (2013) Ataxin-2 interacts with FUS and intermediate-length polyglutamine expansions enhance FUS-related pathology in amyotrophic lateral sclerosis. Hum Mol Genet 22(4):717–728

Article  PubMed  CAS  Google Scholar 

Salmon K et al (2022) The value of testing for ATXN2 intermediate repeat expansions in routine clinical practice for amyotrophic lateral sclerosis. Eur J Hum Genet 30(11):1205–1207

Article  PubMed  PubMed Central  Google Scholar 

Edgar S et al (2021) Mutation analysis of SOD1, C9orf72, TARDBP and FUS genes in ethnically-diverse Malaysian patients with amyotrophic lateral sclerosis (ALS). Neurobiol Aging 108:200–206

Article  PubMed  CAS  Google Scholar 

Carvalho MD, Swash M (2009) Awaji diagnostic algorithm increases sensitivity of El Escorial criteria for ALS diagnosis. Amyotroph Lateral Scler 10(1):53–57

Article  PubMed  Google Scholar 

Brooks BR et al (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299

Article  PubMed  CAS  Google Scholar 

Hou X et al (2022) The clinical and polynucleotide repeat expansion analysis of ATXN2, NOP56, AR and C9orf72 in patients with ALS from Mainland China. Front Neurol 13:811202

Article  PubMed  PubMed Central  Google Scholar 

Liu X et al (2013) ATXN2 CAG repeat expansions increase the risk for Chinese patients with amyotrophic lateral sclerosis. Neurobiol Aging 34(9):2236e5–2236e8

Article  Google Scholar 

Liu Z et al (2021) Mutation spectrum of amyotrophic lateral sclerosis in Central South China. Neurobiol Aging 107:181–188

Article  PubMed  CAS  Google Scholar 

Lu HP et al (2015) Intermediate-length polyglutamine in ATXN2 is a possible risk factor among Eastern Chinese patients with amyotrophic lateral sclerosis. Neurobiol Aging, 36(3): p. 1603 e11- 1603e14

Article  Google Scholar 

Errico A, Ballabio A, Rugarli EI (2002) Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet 11(2):153–163

Article  PubMed  CAS  Google Scholar 

Shoukier M et al (2009) Expansion of mutation spectrum, determination of mutation cluster regions and predictive structural classification of SPAST mutations in hereditary spastic paraplegia. Eur J Hum Genet 17(2):187–194

Article  PubMed  CAS  Google Scholar 

Verriello L et al (2021) Amplifying the spectrum of SPAST gene mutations. Acta Biomed 92(S1):e2021220

PubMed  PubMed Central  CAS  Google Scholar 

Nagy ZF et al (2024) Beyond C9orf72: repeat expansions and copy number variations as risk factors of amyotrophic lateral sclerosis across various populations. BMC Med Genomics 17(1):30

Article  PubMed  PubMed Central  CAS  Google Scholar 

Depienne C, Mandel JL (2021) 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am J Hum Genet 108(5):764–785

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shamim U et al (2020) C9orf72 hexanucleotide repeat expansion in Indian patients with ALS: a common founder and its geographical predilection. Neurobiol Aging 88:156 e1-156 e9

Article  Google Scholar 

Soong BW et al (2014) Extensive molecular genetic survey of Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol Aging 35(10):2423e1–2423e6

Article  Google Scholar 

Kim YE et al (2018) Analysis of ATXN2 trinucleotide repeats in Korean patients with amyotrophic lateral sclerosis. Neurobiol Aging, 67: p. 20 1e5-201e8

Article  Google Scholar 

Naruse H et al (2019) Association of ATXN2 intermediate-length CAG repeats with amyotrophic lateral sclerosis correlates with the distributions of normal CAG repeat alleles among individual ethnic populations. Neurogenetics 20(2):65–71

Article  PubMed  CAS  Google Scholar 

Narain P et al (2017) C9orf72 hexanucleotide repeat expansions and ataxin 2 intermediate length repeat expansions in Indian patients with amyotrophic lateral sclerosis. Neurobiol Aging, 56: p. 211 e9-211 e14.

Yu Z et al (2011) PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats. PLoS ONE 6(3):e17951

Article  PubMed  PubMed Central  CAS 

Comments (0)

No login
gif