FCFNets: A Factual and Counterfactual Learning Framework for Enhanced Hepatic Fibrosis Prediction in Young Adults with T2D

Abstract

Hepatic fibrosis poses a significant health risk for young adults with type 2 diabetes (T2D). We propose FCFNets, a novel factual and counterfactual learning framework to predict hepatic fibrosis in young adults with T2D that can address class imbalance issue and increase interpretability leveraging electronic health records (EHRs). We designed a hybrid UNDO oversampling strategy, combining random and dissimilar oversampling that improves dataset diversity and model robustness. FCFNets also integrates SHAP-based global and instance-level explanations, alongside feature interaction analysis, providing insights into critical risk factors associated with hepatic fibrosis. The results show our proposed model outperforms various baseline methods with high sensitivity (0.846) and accuracy (0.768), while delivering counterfactual explanations. Hyperparameter tuning and dropout analysis further refine the model, ensuring optimal performance. This study demonstrates FCFNets potential for early detection and personalized management of hepatic fibrosis, paving the way for interpretable AI applications in precision medicine.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The study has been approved by the University of Florida Institutional Review Board (protocol no. IRB202300939)

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

Data is private, which will not be public available.

Comments (0)

No login
gif