Background Emerging evidence indicates an elevated risk of post-concussion musculoskeletal (MSK) injuries in collegiate athletes; however, identifying athletes at highest risk remains to be elucidated.
Objective The purpose of this study was to model post-concussion MSK injury risk in collegiate athletes by integrating a comprehensive set of variables by machine learning.
Methods A risk model was developed and tested on a dataset of 194 athletes (155 in the training set and 39 in the test set) with 135 variables entered into the analysis, which included participant’s heath and athletic history, concussion injury and recovery specific criteria, and outcomes from a diverse array of concussions assessments. The machine learning approach involved transforming variables by the Weight of Evidence method, variable selection using L1-penalized logistic regression, model selection via the Akaike Information Criterion, and a final L2-regularized logistic regression fit.
Results A model with 48 predictive variables yielded significant predictive performance of subsequent MSK injury with an area under the curve of 0.82. Top predictors included cognitive, balance, and reaction at Baseline and Acute timepoints. At a specified false positive rate of 6.67%, the model achieves a true positive rate (sensitivity) of 79% and a precision (positive predictive value) of 95% for identifying at-risk athletes via a well calibrated composite risk score.
Conclusion These results support the development of a sensitive and specific injury risk model using standard data combined with a novel methodological approach that may allow clinicians to target high injury risk student-athletes. The development and refinement of predictive models, incorporating machine learning and utilizing comprehensive datasets, could lead to improved identification of high-risk athletes and allow for the implementation of targeted injury risk reduction strategies by identifying student-athletes most at risk for post-concussion MSK injury.
Key Points
There is a well-established elevated risk of post-concussion subsequent musculoskeletal injury; however, prior efforts have failed to identify risk factors.
This study developed a composite risk score model with an AUC of 0.82 from common concussion clinical measures and participant demographics.
By identifying athletes at elevated risk, clinicians may be able to reduce injury risk through targeted injury risk reduction programs.
Competing Interest StatementThe authors have declared no competing interest.
Funding StatementAll authors disclose funding from the National Institute of Health: National Institute of Neurological Disorders and Stroke. Dr. Buckley received additional funding from the NCAA/DoD CARE Consortium.
Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Institutional Review Board of the University of Delaware gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Comments (0)