Molecular Allergology: Epitope Discovery and Its Application for Allergen-Specific Immunotherapy of Food Allergy

Bartha I, Almulhem N, Santos AF (2024) Feast for thought: A comprehensive review of food allergy 2021–2023. J Allergy Clin Immunol 153:576–594. https://doi.org/10.1016/j.jaci.2023.11.918

Article  PubMed  PubMed Central  Google Scholar 

Pastorello EA, Trambaioli C (2001) Isolation of food allergens. J Chromatogr B Biomed Sci 756(1–2):71–84. https://doi.org/10.1016/s0378-4347(01)00072-x

Article  CAS  Google Scholar 

Üzülmez Ö, Kalic T, Breiteneder H (2020) Advances and novel developments in molecular allergology. Allergy 75:3027–3038. https://doi.org/10.1111/all.14579

Article  PubMed  Google Scholar 

FAO and WHO (2022) Risk assessment of food allergens. Part 1 - Review and validation of codex alimentarius priority allergen list through risk assessment. Meeting Report. Food Safety and Quality Series No. 14. Rome. https://doi.org/10.4060/cb9070en

Popping B, Diaz-Amigo C (2018) European regulations for labeling requirements for food allergens and substances causing intolerances: History and future. J AOAC Int 101:2–7. https://doi.org/10.5740/jaoacint.17-0381

Article  CAS  PubMed  Google Scholar 

Cook QS, Burks AW (2018) Peptide and recombinant allergen vaccines for food allergy. Clin Rev Allergy Immunol 55(2):162–171. https://doi.org/10.1007/s12016-018-8673-4

Article  CAS  PubMed  Google Scholar 

Sampson HA, O’Mahony L, Burks AW, Plaut M, Lack G, Akdis CA (2018) Mechanisms of food allergy. J Allergy Clin Immunol 141(1):11–19. https://doi.org/10.1016/j.jaci.2017.11.005

Article  CAS  PubMed  Google Scholar 

Chinthrajah RS, Hernandez JD, Boyd SD, Galli SJ, Nadeau KC (2016) Molecular and cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol 137:984–997. https://doi.org/10.1016/j.jaci.2016.02.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luzar J, Štrukelj B, Lunder M (2016) Phage display peptide libraries in molecular allergology: from epitope mapping to mimotope-based immunotherapy. Allergy 71(11):1526–1532. https://doi.org/10.1111/all.12965

Article  CAS  PubMed  Google Scholar 

Cui Y (2014) Immunoglobulin E-binding epitopes of mite allergens: from characterization to immunotherapy. Clin Rev Allergy Immunol 47(3):344–353. https://doi.org/10.1007/s12016-013-8396-5

Article  CAS  PubMed  Google Scholar 

Wai CYY, Leung NYH, Leung PSC, Chu KH (2019) Immunotherapy of food allergy: A comprehensive review. Clin Rev Allergy Immunol 57:55–73. https://doi.org/10.1007/s12016017-8647-y

Article  CAS  PubMed  Google Scholar 

Leung PS, Shu SA, Chang C (2014) The changing geoepidemiology of food allergies. Clin Rev Allergy Immunol 46(3):169–179. https://doi.org/10.1007/s12016-014-8411-5

Article  CAS  PubMed  Google Scholar 

Nguyen A, du Toit G, Lack G, Marrs T (2024) Optimising the management of peanut allergy by targeting immune plasticity. Clin Exp Allergy 54:169–184. https://doi.org/10.1111/cea.14454

Article  CAS  PubMed  Google Scholar 

Liu C, Sathe SK (2018) Food allergen epitope mapping. J Agric Food Chem 66:7238–7248. https://doi.org/10.1021/acs.jafc.8b01967

Article  CAS  PubMed  Google Scholar 

Zhou FL, He SD, Sun HJ, Wang YF, Zhang Y (2021) Advances in epitope mapping technologies for food protein allergens: A review. Trends Food Sci Technol 107:226–239. https://doi.org/10.1016/j.tifs.2020.10.035

Article  CAS  Google Scholar 

Woodfolk JA (2005) High-dose allergen exposure leads to tolerance. Clin Rev Allergy Immunol 28(1):43–58. https://doi.org/10.1385/CRIAI:28:1:043

Article  CAS  PubMed  Google Scholar 

Bohle B (2006) T-cell epitopes of food allergens. Clin Rev Allergy Immunol 30(2):97–108. https://doi.org/10.1385/CRIAI:30:2:97

Article  CAS  PubMed  Google Scholar 

Gondré-Lewis TA, Jiang C, Ford ML, Koelle DM, Sette A, Shalek AK, Thomas PG (2023) NIAID workshop on T cell technologies. Nat Immunol 24(1):14–18. https://doi.org/10.1038/s41590-022-01377-x

Article  PubMed  PubMed Central  Google Scholar 

Hoffmeister B, Kiecker F, Tesfa L, Volk HD, Picker LJ, Kern F (2003) Mapping T cell epitopes by flow cytometry. Methods 29(3):270–281. https://doi.org/10.1016/s1046-2023(02)00349-3

Article  CAS  PubMed  Google Scholar 

Mannering SI, Dromey JA, Morris JS, Thearle DJ, Jensen KP, Harrison LC (2005) An efficient method for cloning human autoantigen-specific T cells. J Immunol Methods 298(1–2):83–92. https://doi.org/10.1016/j.jim.2005.01.001

Article  CAS  PubMed  Google Scholar 

O’Hehir RE, Prickett SR, Rolland JM (2016) T cell epitope peptide therapy for allergic diseases. Curr Allergy Asthma Rep 16(2):14. https://doi.org/10.1007/s11882-015-0587-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyons AB (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243(1–2):147–154. https://doi.org/10.1016/s0022-1759(00)00231-3

Article  CAS  PubMed  Google Scholar 

Quah BJC, Warren HS, Parish CR (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc 2(9):2049–2056. https://doi.org/10.1038/nprot.2007.296

Article  CAS  PubMed  Google Scholar 

Wang SP, Delgado JC, Ravkov E, Eckels DD, Georgelas A, Pavlov IY, Cusick M, Sebastian K, Gleich GJ, Wagner LA (2012) Penaeus monodon tropomyosin induces CD4 T-cell proliferation in shrimp-allergic patients. Hum Immunol 73(4):426–431. https://doi.org/10.1016/j.humimm.2011.12.019

Article  CAS  PubMed  Google Scholar 

Ravkov EV, Pavlov IY, Martins TB, Gleich GJ, Wagner LA, Hill HR, Delgado JC (2013) Identification and validation of shrimp-tropomyosin specific CD4 T cell epitopes. Hum Immunol 74(12):1542–1549. https://doi.org/10.1016/j.humimm.2013.08.276

Article  CAS  PubMed  Google Scholar 

Kamath SD, Scheiblhofer S, Johnson CM, Machado Y, McLean T, Taki AC, Ramsland PA, Iyer S, Joubert I, Hofer H, Wallner M, Thalhamer J, Rolland J, O’Hehir R, Briza P, Ferreira F, Weiss R, Lopata AL (2020) Effect of structural stability on endolysosomal degradation and T-cell reactivity of major shrimp allergen tropomyosin. Allergy 75(11):2909–2919. https://doi.org/10.1111/all.14410

Article  CAS  PubMed  Google Scholar 

Xu LL, Gasset M, Lin H, Yu C, Zhao JL, Dang XW, Li ZX (2021) Identification of the dominant T-cell epitopes of Lit v 1 shrimp major allergen and their functional overlap with known B-cell epitopes. J Agric Food Chem 69(26):7420–7428. https://doi.org/10.1021/acs.jafc.1c02231

Article  CAS  PubMed  Google Scholar 

Prickett SR, Voskamp AL, Phan T, Dacumos-Hill A, Mannering SI, Rolland JM, O’Hehir RE (2013) Ara h 1 CD4+ T cell epitope-based peptides: Candidates for a peanut allergy therapeutic. Clin Exp Allergy 43(6):684–697. https://doi.org/10.1111/cea.12113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huan F, Gao S, Ni LN, Wu MX, Gu Y, Yun X, Liu M, Lai D, Xiao AF, Liu GM (2024) Development of hypoallergenic derivatives of Cra a 1 with B cell epitope deletion and T cell epitope retention. J Agric Food Chem 72:19494–19504. https://doi.org/10.1021/acs.jafc.4c04475

Article  CAS 

Comments (0)

No login
gif