Maternal Immune Activation: Implications for Congenital Heart Defects

Pan M, Li D-Z (2023) Placenta insufficiency and congenital heart defects. American Journal of Obstetrics & Gynecology MFM 5:101070. https://doi.org/10.1016/j.ajogmf.2023.101070

Article  Google Scholar 

Zhao L, Chen L, Yang T et al (2020) Birth prevalence of congenital heart disease in China, 1980–2019: a systematic review and meta-analysis of 617 studies. Eur J Epidemiol 35:631–642. https://doi.org/10.1007/s10654-020-00653-0

Article  PubMed  PubMed Central  Google Scholar 

Su Z, Zou Z, Hay SI et al (2022) Global, regional, and national time trends in mortality for congenital heart disease, 1990–2019: an age-period-cohort analysis for the global burden of disease 2019 study. EClinicalMedicine 43:101249. https://doi.org/10.1016/j.eclinm.2021.101249

Article  PubMed  PubMed Central  Google Scholar 

Zaidi S, Brueckner M (2017) Genetics and genomics of congenital heart disease. Circ Res 120:923–940. https://doi.org/10.1161/CIRCRESAHA.116.309140

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Y, Cai J, Tong X et al (2018) Non-inheritable risk factors during pregnancy for congenital heart defects in offspring: a matched case-control study. Int J Cardiol 264:45–52. https://doi.org/10.1016/j.ijcard.2018.04.003

Article  PubMed  Google Scholar 

Harvey RP (2002) Patterning the vertebrate heart. Nat Rev Genet 3:544–556. https://doi.org/10.1038/nrg843

Article  CAS  PubMed  Google Scholar 

Wagner M, Siddiqui M, a. Q, (2007) Signal transduction in early heart development (I): cardiogenic induction and heart tube formation. Exp Biol Med (Maywood) 232:852–865

CAS  PubMed  Google Scholar 

Buijtendijk MFJ, Barnett P, van den Hoff MJB (2020) Development of the human heart. Am J Med Genet C Semin Med Genet 184:7–22. https://doi.org/10.1002/ajmg.c.31778

Article  PubMed  PubMed Central  Google Scholar 

Hikspoors JPJM, Kruepunga N, Mommen GMC et al (2024) Human cardiac development. Adv Exp Med Biol 1441:3–55. https://doi.org/10.1007/978-3-031-44087-8_1

Article  PubMed  Google Scholar 

Garside VC, Chang AC, Karsan A, Hoodless PA (2013) Co-ordinating notch, BMP, and TGF-β signaling during heart valve development. Cellular and molecular life sciences: CMLS 70:2899–2917. https://doi.org/10.1007/s00018-012-1197-9

Article  CAS  PubMed  Google Scholar 

Chen H, Shi S, Acosta L et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development (Cambridge, England) 131:2219–2231. https://doi.org/10.1242/dev.01094

Article  CAS  PubMed  Google Scholar 

Del Monte-Nieto G, Ramialison M, Adam AAS et al (2018) Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature 557:439–445. https://doi.org/10.1038/s41586-018-0110-6

Article  CAS  PubMed  Google Scholar 

Stoller JZ, Epstein JA (2005) Cardiac neural crest. Semin Cell Dev Biol 16:704–715. https://doi.org/10.1016/j.semcdb.2005.06.004

Article  CAS  PubMed  Google Scholar 

Seiler C, Stoller M, Pitt B, Meier P (2013) The human coronary collateral circulation: development and clinical importance. Eur Heart J 34:2674–2682. https://doi.org/10.1093/eurheartj/eht195

Article  CAS  PubMed  Google Scholar 

Bhattacharyya S, Munshi NV (2020) Development of the cardiac conduction system. Csh Perspect Biol 12:a037408. https://doi.org/10.1101/cshperspect.a037408

Article  CAS  Google Scholar 

Cui Y, Zheng Y, Liu X et al (2019) Single-cell transcriptome analysis maps the developmental track of the human heart. Cell Rep 26:1934-1950.e5. https://doi.org/10.1016/j.celrep.2019.01.079

Article  CAS  PubMed  Google Scholar 

Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science (New York, NY) 330:841–845. https://doi.org/10.1126/science.1194637

Article  CAS  Google Scholar 

Fang M, Xiang F-L, Braitsch CM, Yutzey KE (2016) Epicardium-derived fibroblasts in heart development and disease. J Mol Cell Cardiol 91:23–27. https://doi.org/10.1016/j.yjmcc.2015.12.019

Article  CAS  PubMed  Google Scholar 

Leid J, Carrelha J, Boukarabila H et al (2016) Primitive embryonic macrophages are required for coronary development and maturation. Circ Res 118:1498–1511. https://doi.org/10.1161/CIRCRESAHA.115.308270

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cahill TJ, Sun X, Ravaud C, et al (2021) Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development (Cambridge, England) 148:dev194563. https://doi.org/10.1242/dev.194563

Chen R, Zhang S, Liu F et al (2023) Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation via jagged-1-Notch1. Acta Pharmaceutica Sinica B 13:128–141. https://doi.org/10.1016/j.apsb.2022.08.016

Article  CAS  PubMed  Google Scholar 

Lavine KJ, Epelman S, Uchida K et al (2014) Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci USA 111:16029–16034. https://doi.org/10.1073/pnas.1406508111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abe H, Takeda N, Isagawa T et al (2019) Macrophage hypoxia signaling regulates cardiac fibrosis via oncostatin M. Nat Commun 10:2824. https://doi.org/10.1038/s41467-019-10859-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeBerge M, Yeap XY, Dehn S et al (2017) MerTK cleavage on resident cardiac macrophages compromises repair after myocardial ischemia reperfusion injury. Circ Res 121:930–940. https://doi.org/10.1161/CIRCRESAHA.117.311327

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shigeta A, Huang V, Zuo J et al (2019) Endocardially derived macrophages are essential for valvular remodeling. Dev Cell 48:617-630.e3. https://doi.org/10.1016/j.devcel.2019.01.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Hsiao H-M, Higashikubo R et al (2016) Heart-resident CCR2+ macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling. JCI insight 1(e87315):87315. https://doi.org/10.1172/jci.insight.87315

Article  PubMed  Google Scholar 

Garand M, Huang SSY, Dineen B et al (2024) Differential regulation of immune-related genes in the developing heart. Pediatr Cardiol. https://doi.org/10.1007/s00246-024-03441-9

Article  PubMed  Google Scholar 

Wei L (2011) Immunological aspect of cardiac remodeling: T lymphocyte subsets in inflammation-mediated cardiac fibrosis. Exp Mol Pathol 90:74–78. https://doi.org/10.1016/j.yexmp.2010.10.004

Article  CAS  PubMed  Google Scholar 

Bronevetsky Y, Burt TD, McCune JM (2016) Lin28b regulates fetal regulatory T cell differentiation through modulation of TGF-β signaling. Journal of Immunology (Baltimore, Md: 1950) 197:4344–4350. https://doi.org/10.4049/jimmunol.1601070

Zacchigna S, Martinelli V, Moimas S et al (2018) Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat Commun 9:2432. https://doi.org/10.1038/s41467-018-04908-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adamo L, Rocha-Resende C, Lin C-Y et al (2020) M

Comments (0)

No login
gif