In this portion, certain situations of the Wyckoff stochastic model have been examined.
Situation with identical lambda constraintsThis condition, also known as the commutative condition, states that our transition operators \(P_\) through \(P_\) (none of which are identity operators) have identical lambda conditions \((\lambda _=\lambda _=\lambda _=\lambda _=\lambda _=\lambda _=\lambda _=\lambda _=\lambda )\). Due to these constraints, our transition operators (4.6) are reduced to
$$\begin \left\ P_x&= \vartheta _x+(1-\vartheta _)\lambda , \\ P_x&=\vartheta _x+(1-\vartheta _)\lambda , \\ P_x&=\vartheta _x+(1-\vartheta _)\lambda , \\ P_x&=\vartheta _x+(1-\vartheta _)\lambda , \\ P_x&=\vartheta _x+(1-\vartheta _)\lambda , \\ P_x&=\vartheta _x+(1-\vartheta _)\lambda , \\ P_x&=\vartheta _x+(1-\vartheta _)\lambda , \\ P_x&=\vartheta _x+(1-\vartheta _)\lambda . \ \end\right. \end$$
(6.1)
By ensuring that all transition operators share the same lambda value, this condition maintains the model’s stability across different maze structures and configurations. This uniformity allows the model to generalize beyond a specific experimental setting, making it adaptable to alternative maze layouts without requiring extensive parameter adjustments. Now, our functional Eq. (5.1) can be expressed as
$$\begin \mathcal (x)= & \fracu_x\mathcal (\vartheta _x+(1-\vartheta _)\lambda )\nonumber \\ & +\frac(1-u_)x\mathcal (\vartheta _x+(1-\vartheta _)\lambda ) \nonumber \\ & +\fracu_x\mathcal (\vartheta _x+(1-\vartheta _)\lambda )\nonumber \\ & +\frac(1-u_)x\mathcal (\vartheta _x+(1-\vartheta _)\lambda ) \nonumber \\ & +\frac(1-x)u_ \mathcal (\vartheta _x+(1-\vartheta _)\lambda )\nonumber \\ & + \frac(1-x)(1 - u_) \mathcal (\vartheta _x+(1-\vartheta _)\lambda ), \nonumber \\ & +\frac(1-x)u_ \mathcal (\vartheta _x+(1-\vartheta _)\lambda )\nonumber \\ & + \frac(1-x)(1 - u_) \mathcal (\vartheta _x+(1-\vartheta _)\lambda ), \end$$
(6.2)
where \(0<\vartheta _,\vartheta _,\vartheta _,\vartheta _,\vartheta _,\vartheta _, \vartheta _, \vartheta _<1\), \(\lambda ,u_,u_\in \mathcal \) and \(\mathcal :\mathcal \rightarrow \mathbb \) is an unknown function. The Theorem 5.1 has the following findings as a result.
Corollary 6.1Let \(0<\vartheta _,\vartheta _,\dots ,\vartheta _<1\) and \(\lambda ,u_,u_\in \mathcal \) with \(\mathfrak _^ <1\), where \(\mathfrak _^\) is defined in (4.3). If an operator Z from \(\Lambda\) associated for every \(\mathcal \) \(\in\) \(\Lambda\) and for all \(x\in \mathcal \) by
$$\begin (Z\mathcal )(x)= & \fracu_x\mathcal (\vartheta _x+(1-\vartheta _)\lambda )\nonumber \\ & +\frac(1-u_)x\mathcal (\vartheta _x+(1-\vartheta _)\lambda ) \nonumber \\ & +\fracu_x\mathcal (\vartheta _x+(1-\vartheta _)\lambda ) \nonumber \\ & + \frac(1-u_)x\mathcal (\vartheta _x+(1-\vartheta _)\lambda ) \nonumber \\ & +\frac(1-x)u_ \mathcal (\vartheta _x+(1-\vartheta _)\lambda )\nonumber \\ & + \frac(1-x)(1 - u_) \mathcal (\vartheta _x+(1-\vartheta _)\lambda ), \nonumber \\ & +\frac(1-x)u_ \mathcal (\vartheta _x+(1-\vartheta _)\lambda )\nonumber \\ & + \frac(1-x)(1 - u_) \mathcal (\vartheta _x+(1-\vartheta _)\lambda ), \end$$
(6.3)
and satisfies property (\(\mathfrak ^\)), then Z is a BCM.
Corollary 6.2The Eq. (6.2) has a unique solution having that \(\mathfrak _^ <1\), where \(\mathfrak _^\) is given in (4.3), and there exists an operator Z defined in (6.3) satisfies property (\(\mathfrak ^\)). Furthermore, the iteration \(\_\}\) (\(\forall n\in \mathbb \)) in \(\Lambda\), where \(\mathcal _\in \Lambda\), is given by
$$\begin (\mathcal _)(x)= & \fracu_x\mathcal _(\vartheta _x+(1-\vartheta _)\lambda )\nonumber \\ & +\frac(1-u_)x\mathcal _(\vartheta _x+(1-\vartheta _)\lambda ) \nonumber \\ & +\fracu_x\mathcal _(\vartheta _x+(1-\vartheta _)\lambda )\nonumber \\ & +\frac(1-u_)x\mathcal _(\vartheta _x+(1-\vartheta _)\lambda ) \nonumber \\ & +\frac(1-x)u_ \mathcal _(\vartheta _x+(1-\vartheta _)\lambda )\nonumber \\ & + \frac(1-x)(1 - u_) \mathcal _(\vartheta _x+(1-\vartheta _)\lambda ),\nonumber \\ & +\frac(1-x)u_ \mathcal _(\vartheta _x+(1-\vartheta _)\lambda )\nonumber \\ & + \frac(1-x)(1 - u_) \mathcal _(\vartheta _x+(1-\vartheta _)\lambda ), \end$$
(6.4)
converges to the unique solution of (6.2).
Elimination of a behavioral reflexIt’s possible that the mouse’s frequent right- or left-turning side reactions might reduce an event’s probability to the point of asymptote to zero. Such a situation necessitates the assumption that \(\lambda _=\lambda _=\dots =\lambda _ =0\). These constraints decrease our four operators (4.6) to
$$\begin \left\ P_x&=\vartheta _x, \\ P_x&=\vartheta _x, \\ P_x&=\vartheta _x, \\ P_x&=\vartheta _x, \\ P_x&=\vartheta _x, \\ P_x&=\vartheta _x \\ P_x&=\vartheta _x \\ P_x&=\vartheta _x \ \end\right. \end$$
(6.5)
By setting lambda values to zero in cases where habitual side preferences emerge, this condition prevents the model from being influenced by fixed behavioral reflexes. As a result, decision-making remains dynamically responsive to environmental cues rather than being constrained by preconditioned biases, thereby improving the model’s generalizability across different testing conditions. So, we can write (5.1) as
$$\begin \mathcal (x)= & \fracu_x\mathcal (\vartheta _x) +\frac(1-u_)x\mathcal (\vartheta _x)\nonumber \\ & +\fracu_x\mathcal (\vartheta _x) \nonumber \\ & +\frac(1-u_)x\mathcal (\vartheta _x) +\frac(1-x)u_ \mathcal (\vartheta _x)\nonumber \\ & +\frac(1-x)(1 - u_) \mathcal (\vartheta _x), \nonumber \\ & +\frac(1-x)u_ \mathcal (\vartheta _x) +\frac(1-x)(1 - u_) \mathcal (\vartheta _x), \end$$
(6.6)
where \(0<\vartheta _,\vartheta _,\vartheta _,\vartheta _,\vartheta _,\vartheta _, \vartheta _, \vartheta _<1\), \(u_,u_\in \mathcal \) and \(\mathcal :\mathcal \rightarrow \mathbb \) is an unknown function. The following are the Theorem 5.1’s corollaries.
Corollary 6.3Let \(0<\vartheta _,\vartheta _,\vartheta _,\vartheta _,\vartheta _,\vartheta _, \vartheta _, \vartheta _<1\) and \(u_,u_\in \mathcal ,\) with \(\mathfrak _^ <1\), where \(\mathfrak _^\) is defined in (4.4). If an operator Z from \(\Lambda\) associated for every \(\mathcal \) \(\in\) \(\Lambda\) and for all \(x\in \mathcal \) by
$$\begin (Z\mathcal )(x)= & \fracu_x\mathcal (\vartheta _x) +\frac(1-u_)x\mathcal (\vartheta _x)\nonumber \\ & +\fracu_x\mathcal (\vartheta _x) \nonumber \\ & +\frac(1-u_)x\mathcal (\vartheta _x) +\frac(1-x)u_ \mathcal (\vartheta _x)\nonumber \\ & +\frac(1-x)(1 - u_) \mathcal (\vartheta _x) \nonumber \\ & +\frac(1-x)u_\mathcal (\vartheta _x) +\frac(1-x)(1 - u_) \mathcal (\vartheta _x), \end$$
(6.7)
and satisfies property (\(\mathfrak ^\)), then Z is a BCM.
Corollary 6.4The stochastic Eq. (6.6) has a unique solution with \(\mathfrak _^ <1\), where \(\mathfrak _^\) is given in (4.4), and there exists an operator Z defined in (6.7) satisfies property (\(\mathfrak ^\)). Furthermore, the iteration \(\_\}\) (\(\forall n\in \mathbb \)) in \(\Lambda\), where \(\mathcal _\in \Lambda\), is given by
$$\begin (\mathcal _)(x)= & \fracu_x\mathcal _(\vartheta _x) +\frac(1-u_)x\mathcal _(\vartheta _x)\nonumber \\ & +\fracu_x\mathcal _(\vartheta _x) +\frac(1-u_)x\mathcal _(\vartheta _x) \nonumber \\ & +\frac(1-x)u_ \mathcal _(\vartheta _x) \nonumber \\ & +\frac(1-x)(1 - u_)\mathcal _(\vartheta _x) \nonumber \\ & +\frac(1-x)u_\mathcal _(\vartheta _x) \nonumber \\ & +\frac(1-x)(1 - u_)\mathcal _(\vartheta _x), \end$$
(6.8)
converges to the unique solution of (6.6).
In the same way, if the rat frequently selects the food side, the chance of that event occurring increases. Therefore, we have
$$\begin \lambda _ = \lambda _ = \dots = \lambda _ =1. \end$$
In this situation, our four operators will be
$$\begin \left\ P_x&=\vartheta _x+(1-\vartheta _), \\ P_x&=\vartheta _x+(1-\vartheta _), \\ P_x&=\vartheta _x+(1-\vartheta _), \\ P_x&=\vartheta _x+(1-\vartheta _), \\ P_x&=\vartheta _x+(1-\vartheta _), \\ P_x&=\vartheta _x+(1-\vartheta _). \\ P_x&=\vartheta _x+(1-\vartheta _), \\ P_x&=\vartheta _x+(1-\vartheta _). \ \end\right. \end$$
(6.9)
Now, our functional Eq. (5.1) may be expressed as
$$\begin \mathcal (x)= & \fracu_x\mathcal (\vartheta _x + (1-\vartheta _))\nonumber \\ & +\frac(1-u_)x\mathcal (\vartheta _x + (1-\vartheta _)) \nonumber \\ & + \fracu_x\mathcal (\vartheta _x + (1-\vartheta _))\nonumber \\ & + \frac(1-u_)x\mathcal (\vartheta _x + (1-\vartheta _)) \nonumber \\ & + \frac(1-x)u_ \mathcal (\vartheta _x + (1-\vartheta _))\nonumber \\ & +\frac(1-x)(1 - u_) \mathcal (\vartheta _x + (1-\vartheta _)),\nonumber \\ & + \frac(1-x)u_ \mathcal (\vartheta _x + (1-\vartheta _))\nonumber \\ & +\frac(1-x)(1 - u_)\mathcal (\vartheta _x + (1-\vartheta _)), \end$$
(6.10)
where \(0<\vartheta _, \vartheta _, \vartheta _, \vartheta _,\vartheta _, \vartheta _, \vartheta _, \vartheta _ <1\), \(u_, u_ \in \mathcal \) and \(\mathcal :\mathcal \rightarrow \mathbb \) is an unknown function. The following outcomes are the findings of Theorem 5.1.
Corollary 6.5Let \(0<\vartheta _, \vartheta _, \vartheta _, \vartheta _, \vartheta _, \vartheta _, \vartheta _, \vartheta _<1\) and \(u_, u_ \in \mathcal \) with \(\mathfrak _^ <1\), where \(\mathfrak _^\) is defined in (4.5). If an operator Z from \(\Lambda\) associated for every \(\mathcal \) \(\in\) \(\Lambda\) and for all \(x\in \mathcal \) by
$$\begin (Z\mathcal )(x)= & \fracu_x\mathcal (\vartheta _x +(1-\vartheta _))\nonumber \\ & +\frac(1-u_)x\mathcal (\vartheta _x +(1-\vartheta _)) \nonumber \\ & + \fracu_x\mathcal (\vartheta _x + (1-\vartheta _))\nonumber \\ & + \frac(1-u_)x\mathcal (\vartheta _x + (1-\vartheta _)) \nonumber \\ & +\frac(1-x)u_ \mathcal (\vartheta _x + (1-\vartheta _))\nonumber \\ & +\frac(1-x)(1 - u_) \mathcal (\vartheta _x + (1-\vartheta _)),\nonumber \\ & +\frac(1-x)u_ \mathcal (\vartheta _x + (1-\vartheta _))\nonumber \\ & +\frac(1-x)(1 - u_) \mathcal (\vartheta _x + (1-\vartheta _)), \end$$
(6.11)
and satisfies property (\(\mathfrak ^\)), then Z is a BCM.
Corollary 6.6The Eq. (6.10) has a unique solution claiming that \(\mathfrak _^ <1\), where \(\mathfrak _^\) is defined in (4.5), and there exists an operator Z defined in (6.11) satisfies property (\(\mathfrak ^\)). Furthermore, the iteration \(\_\}\) (\(\forall n\in \mathbb \)) in \(\Lambda\), where \(\mathcal _\in \Lambda\), is given by
$$\begin (\mathcal _)(x)= & \fracu_x\mathcal _(\vartheta _x+(1-\vartheta _))\nonumber \\ & +\frac(1-u_)x\mathcal _(\vartheta _x+(1-\vartheta _))\nonumber \\ & +\fracu_x\mathcal _(\vartheta _x+(1-\vartheta _))\nonumber \\ & +\frac(1-u_)x\mathcal _(\vartheta _x+(1-\vartheta _)) \nonumber \\ & +\frac(1-x)u_ \mathcal _(\vartheta _x+(1-\vartheta _))\nonumber \\ & +\frac(1-x)(1 - u_) \mathcal _(\vartheta _x+(1-\vartheta _)), \nonumber \\ & +\frac(1-x)u_ \mathcal _(\vartheta _x+(1-\vartheta _))\nonumber \\ & +\frac(1-x)(1 - u_) \mathcal _(\vartheta _x+(1-\vartheta _)), \end$$
(6.12)
converges to the unique solution of (6.10).
Comments (0)