Dynamic analysis of multi-spiral chaotic inertia model with a cyclic configuration involving four homogeneous HNN cells: stability analysis, analog and digital verifications

An X-K et al (2024) A few-shot identification method for stochastic dynamical systems based on residual multipeaks adaptive sampling. Chaos: An Interdiscip J Nonlinear Sci. https://doi.org/10.1063/5.0209779

Article  Google Scholar 

Balaraman S et al (2023) From coexisting attractors to multi-spiral chaos in a ring of three coupled excitation-free Duffing oscillators. Chaos, Solitons Fractals 172:113619

Article  Google Scholar 

Bao B-C et al (2016) Hidden attractors in a practical Chua’s circuit based on a modified Chua’s diode. Electron Lett 52(1):23–25

Article  Google Scholar 

Bao B et al (2019) Dynamical effects of neuron activation gradient on Hopfield neural network: numerical analyses and hardware experiments. Int J Bifurcation Chaos 29(04):1930010

Article  Google Scholar 

Bernardo MD, Johansson KH, Vasca F (2001) Self-oscillations and sliding in relay feedback systems: symmetry and bifurcations. Int J Bifurcation Chaos 11(04):1121–1140

Article  Google Scholar 

Cannas B, Cincotti S (2002) Hyperchaotic behaviour of two bi-directionally coupled Chua’s circuits. Int J Circuit Theory Appl 30(6):625–637

Article  Google Scholar 

Chen Z et al (2023) An overview of in vitro biological neural networks for robot intelligence. Cyborg Bionic Syst 4:0001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chi H (2020) The application of OrCAD/PSpice software in electronic circuit analysis. 2020. Singapore: Springer Singapore.

Dana SK et al (2008) Multiscroll in coupled double scroll type oscillators. Int J Bifurcation Chaos 18(10):2965–2980

Article  Google Scholar 

Ding F et al (2024) Adaptive memory event triggered output feedback finite-time lane keeping control for autonomous heavy truck with roll prevention. IEEE Trans Fuzzy Syst

Dongmo TS, Kengne J (2024) Multiple scroll attractors and multistability in the collective dynamics of a four chain coupled hopfield inertial neuron network: analysis and circuit design investigations. Phys Scr 99(6):065223

Article  Google Scholar 

Epstein G (1958) Synthesis of electronic circuits for symmetric functions. IRE Trans Electron Comput 1:57–60

Article  Google Scholar 

Fu S et al (2023) Star memristive neural network: dynamics analysis, circuit implementation, and application in a color cryptosystem. Entropy 25(9):1261

Article  PubMed  PubMed Central  Google Scholar 

Hamill DC (1993) Learning about chaotic circuits with SPICE. IEEE Trans Educ 36(1):28–35

Article  Google Scholar 

Hens C, Dana SK, Feudel U (2015) Extreme multistability: attractor manipulation and robustness. Chaos: An Interdiscip J Nonlinear Sci 25(5):053112

Article  Google Scholar 

Huang W-Z, Huang Y (2011) Chaos, bifurcation and robustness of a class of Hopfield neural networks. Int J Bifurcation Chaos 21(03):885–895

Article  Google Scholar 

Isaac SD, TabekouengNjitacke Z, Kengne J (2020) Effects of low and high neuron activation gradients on the dynamics of a simple 3D hopfield neural network. Int J Bifurcation Chaos 30(11):2050159. https://doi.org/10.1142/S021812742050159X

Article  Google Scholar 

Itoh M (2001) Synthesis of electronic circuits for simulating nonlinear dynamics. Int J Bifurcation Chaos 11(03):605–653

Article  Google Scholar 

Kengne J et al (2016) Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit. Int J Bifurcation Chaos 26(05):1650081

Article  Google Scholar 

Kengne J et al (2019) Effects of symmetric and asymmetric nonlinearity on the dynamics of a novel chaotic jerk circuit: Coexisting multiple attractors, period doubling reversals, crisis, and offset boosting. Chaos, Solitons Fractals 121:63–84

Article  Google Scholar 

Koinfo JB et al (2024) Investigation on the regular and chaotic dynamics of a ring network of five inertial Hopfield neural network: theoretical, analog and microcontroller simulation. Cognitive Neurodynamics. https://doi.org/10.1007/s11571-024-10170-5

Article  PubMed  Google Scholar 

Krenker A, Bešter J, Kos A (2011) Introduction to the artificial neural networks. Artif Neural Netw: Methodological Adv Biomed Appl. InTech, p. 1–18.

Krogh A (2008) What are artificial neural networks? Nat Biotechnol 26(2):195–197

Article  CAS  PubMed  Google Scholar 

Lai Q, Guo S (2024) Heterogeneous coexisting attractors, large-scale amplitude control and finite-time synchronization of central cyclic memristive neural networks. Neural Netw 178:106412. https://doi.org/10.1016/j.neunet.2024.106412

Article  PubMed  Google Scholar 

Lathrop D (2015) Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Phys Today 68(4):54

Article  Google Scholar 

Li C et al (2022) Constructing conditional symmetry in symmetric chaotic systems. Chaos, Solitons Fractals 155:111723

Article  Google Scholar 

Liang J et al (2024) Enhancing high-speed cruising performance of autonomous vehicles through integrated deep reinforcement learning framework. arXiv preprint arXiv:2404.14713, 2024.

Madasamy E et al (2023) Collective dynamics of two coupled Hopfield inertial neurons with different activation functions: theoretical study and microcontroller implementation. Phys Scr 98(9):095219

Article  CAS  Google Scholar 

Moiola JL, Chua LO (1999) Hopf bifurcations and degeneracies in Chua’s circuit—a perspective from a frequency domain approach. Int J Bifurcation Chaos 9(01):295–303

Article  Google Scholar 

Nazarimehr F et al (2017) Investigation of bifurcations in the process equation. Int J Bifurcation Chaos 27(13):1750201

Article  Google Scholar 

Njitacke ZT et al (2021) Hamiltonian energy and coexistence of hidden firing patterns from bidirectional coupling between two different neurons. Cognitive Neurodynamics 16(4):899–916. https://doi.org/10.1007/s11571-021-09747-1

Article  PubMed  PubMed Central  Google Scholar 

Pastor I et al (1993) Ordered and chaotic behavior of two coupled van der Pol oscillators. Phys Rev E 48(1):171

Article  CAS  Google Scholar 

Pham V-T et al (2018) A novel cubic–equilibrium chaotic system with coexisting hidden attractors: analysis, and circuit implementation. J Circuits, Syst Comput 27(04):1850066

Article  Google Scholar 

Ramadoss J et al (2022) Multiple Hopf bifurcations, period-doubling reversals and coexisting attractors for a novel chaotic jerk system with Tchebytchev polynomials. Physica A 587:126501

Article  Google Scholar 

Ramshaw R, Schuurman, D (1997) PSPICE Simulation of power electronics circuits. 1997: Chapman & Hall London.

Singh JP, Roy B (2016) The nature of Lyapunov exponents is (+,+,−,−). Is it a hyperchaotic system?. Chaos, Solitons Fractals 92 73–85.

Sriram S et al (2022) Coexistence of multiscroll chaotic attractors in two coupled inertial hopfield neurons: numerical simulations and experiment. Phys Scr 97(12):125207

Article  CAS  Google Scholar 

Strogatz SH (2001) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (studies in nonlinearity). Nonlinear Dyn Chaos: Appl Phys, Biology, Chem, Eng (Studies in Nonlinearity)

Strogatz SH (2018) Nonlinear dynamics and chaos with student solutions manual: With applications to physics, biology, chemistry, and engineering. CRC press.

Sundarambal B et al (2023) Theoretical study and circuit implementation of three chain-coupled self-driven Duffing oscillators. Chaos: An Interdiscip J Nonlinear Sci. https://doi.org/10.1063/5.0155047

Article  Google Scholar 

Tsafack N, Kengne J (2019) Complex dynamics of the Chua’s circuit system with adjustable symmetry and nonlinearity: multistability and simple circuit realization. World J Appl Phys 4(2):24

Article  Google Scholar 

Venkatesh J et al (2024) On the occurrence of multiscroll and multistable dynamics in a star network of four nonlinearly coupled self-driven Duffing–Rayleigh oscillators. Eur Phys J Special Topics. https://doi.org/10.1140/epjs/s11734-024-01241-z

Article  Google Scholar 

Vivekanandan G et al (2024) Interior crisis route to extreme events in a memristor-based 3D jerk system. Int J Bifurcation Chaos. https://doi.org/10.1142/S021812742450161X

Article  Google Scholar 

Wang H et al (2023) A MTPA and flux-weakening curve identification method based on physics-informed network without calibration. IEEE Trans Power Electron

Wang Z et al (2024) Chaotic dynamics of a carbon nanotube oscillator with symmetry-breaking. Phys Scr 100(1):015225

Article  Google Scholar 

Wei Z et al (2017) Detecting hidden chaotic regions and complex dynamics in the self-exciting homopolar disc dynamo. Int J Bifurcation Chaos 27(02):1730008

Article  Google Scholar 

Wei Z et al (2017) Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo. Chaos: An Interdiscip J Nonlinear Sci. https://doi.org/10.1063/1.4977417

Article  Google Scholar 

Wei Z et al (2019) Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays. Appl Math Comput 347:265–281

Article  Google Scholar 

Wei Z et al (2020) Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete Cont Dyn Syst-Series B 26(10).

Wolf A et al (1985) Determining Lyapunov exponents from a time series. Physica D 16(3):285–317

Article  Google Scholar 

Wu Q et al (2024) Nonlinear dynamics of three-layer microplates: simultaneous presence of the micro-scale and imperfect effects. Eur Phys J Plus 139(5):1–21

Comments (0)

No login
gif