EEG-based schizophrenia detection: integrating discrete wavelet transform and deep learning

Agarwal M, Singhal A (2023) Fusion of pattern-based and statistical features for schizophrenia detection from EEG signals. Med Eng Phys 112:103949

Article  PubMed  Google Scholar 

Baradits M, Bitter I, Czobor P (2020) Multivariate patterns of EEG microstate parameters and their role in the discrimination of patients with schizophrenia from healthy controls. Psychiatry Res 288:112938

Article  PubMed  Google Scholar 

Baygin M, Barua PD, Chakraborty S, Tuncer I, Dogan S, Palmer E, Tuncer T, Kamath AP, Ciaccio EJ, Acharya UR (2023) Ccpnet136: automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signals. Physiol Meas 44(3):035008

Article  Google Scholar 

Bhadra S, Kumar CJ, Bhattacharyya DK (2024) Multiview EEG signal analysis for diagnosis of schizophrenia: an optimized deep learning approach. Multimed Tools Appl pp 1–32

Boostani R, Sadatnezhad K, Sabeti M (2009) An efficient classifier to diagnose of schizophrenia based on the eeg signals. Expert Syst Appl 36(3):6492–6499

Article  Google Scholar 

Das K, Pachori RB (2021) Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals. Biomed Signal Process Control 67:102525

Article  Google Scholar 

De Bruin EA, Stam CJ, Bijl S, Verbaten MN, Kenemans JL (2006) Moderate-to-heavy alcohol intake is associated with differences in synchronization of brain activity during rest and mental rehearsal. Int J Psychophysiol 60(3):304–314

Article  PubMed  Google Scholar 

Dvey-Aharon Z, Fogelson N, Peled A, Intrator N (2015) Schizophrenia detection and classification by advanced analysis of eeg recordings using a single electrode approach. PloS One 10(4):0123033

Article  Google Scholar 

Fisher DJ, Salisbury DF (2019) The neurophysiology of schizophrenia: current update and future directions. Int J Psychophysiol

Ford JM, Palzes VA, Roach BJ, Mathalon DH (2014) Did i do that? abnormal predictive processes in schizophrenia when button pressing to deliver a tone. Schizophr Bull 40(4):804–812

Article  PubMed  Google Scholar 

Gordillo D, Cruz JR, Chkonia E, Lin W-H, Favrod O, Brand A, Figueiredo P, Roinishvili M, Herzog MH (2023) The EEG multiverse of schizophrenia. Cereb Cortex 33(7):3816–3826

Article  PubMed  Google Scholar 

Gosala B, Dindayal Kapgate P, Jain P, Nath Chaurasia R, Gupta M (2023) Wavelet transforms for feature engineering in EEG data processing: an application on schizophrenia. Biomed Signal Process Control 85:104811. https://doi.org/10.1016/j.bspc.2023.104811

Article  Google Scholar 

Jahmunah V, Oh SL, Rajinikanth V, Ciaccio EJ, Cheong KH, Arunkumar N, Acharya UR (2019) Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 100:101698

Article  CAS  PubMed  Google Scholar 

Khare SK, Bajaj V, Siuly S, Sinha G (2020) Classification of schizophrenia patients through empirical wavelet transformation using electroencephalogram signals. In: Modelling and analysis of active biopotential signals in healthcare, vol 1, IOP Publishing Bristol, UK, pp 1–1

Khare SK, Bajaj V (2021) A self-learned decomposition and classification model for schizophrenia diagnosis. Comput Methods Programs Biomed 211:106450

Article  PubMed  Google Scholar 

Khare SK, Bajaj V (2022) A hybrid decision support system for automatic detection of schizophrenia using EEG signals. Comput Biol Med 141:105028

Article  PubMed  Google Scholar 

Khare SK, Bajaj V, Acharya UR (2021) SPWVD-CNN for automated detection of schizophrenia patients using EEG signals. IEEE Trans Instrum Meas 70:1–9

Article  Google Scholar 

Ko D-W, Yang J-J (2022) EEG-based schizophrenia diagnosis through time series image conversion and deep learning. Electronics 11(14):2265

Article  Google Scholar 

Krishnan PT, Raj ANJ, Balasubramanian P, Chen Y (2020) Schizophrenia detection using multivariate empirical mode decomposition and entropy measures from multichannel EEG signal. Biocybern Biomed Eng 40(3):1124–1139

Article  Google Scholar 

Kumar JS, Bhuvaneswari P (2012) Analysis of electroencephalography (EEG) signals and its categorization-a study. Procedia Eng 38:2525–2536

Article  Google Scholar 

Kumar TS, Rajesh KN, Maheswari S, Kanhangad V, Acharya UR (2023) Automated schizophrenia detection using local descriptors with EEG signals. Eng Appl Artif Intell 117:105602

Article  Google Scholar 

Li F, Wang J, Liao Y, Yi C, Jiang Y, Si Y, Peng W, Yao D, Zhang Y, Dong W et al (2019) Differentiation of schizophrenia by combining the spatial EEG brain network patterns of rest and task P300. IEEE Trans Neural Syst Rehabilit Eng 27(4):594–602

Article  Google Scholar 

Li B, Wang J, Guo Z, Li Y (2023) Automatic detection of schizophrenia based on spatial-temporal feature mapping and LeViT with EEG signals. Expert Syst Appl 224:119969

Article  Google Scholar 

Naik M UK, Rafi Ahamed S (2024) Wavelet-based autoencoder and efficientnet for schizophrenia detection from EEG signals. arXiv e-prints, pp 2407

Oh SL, Vicnesh J, Ciaccio EJ, Yuvaraj R, Acharya UR (2019) Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals. Appl Sci 9(14):2870

Article  Google Scholar 

Olejarczyk E, Jernajczyk W (2017) EEG in schizophrenia. RepOD

Pacific W, Hasan SAW (2021) Magnitude and impact

Perera MPN, Mallawaarachchi S, Bailey NW, Murphy OW, Fitzgerald PB (2023) Obsessive-compulsive disorder (ocd) is associated with increased electroencephalographic (eeg) delta and theta oscillatory power but reduced delta connectivity. J Psychiatr Res 163:310–317

Article  PubMed  Google Scholar 

Perrottelli A, Giordano GM, Brando F, Giuliani L, Mucci A (2021) EEG-based measures in at-risk mental state and early stages of schizophrenia: a systematic review. Front Psychiatry 12:653642

Article  PubMed  PubMed Central  Google Scholar 

Ranjan R, Sahana BC, Bhandari AK (2024) Deep learning models for diagnosis of schizophrenia using eeg signals: emerging trends, challenges, and prospects. Arch Comput Methods Eng 31(4):2345–2384

Article  Google Scholar 

Sabeti M, Boostani R, Katebi SD, Price G (2007) Selection of relevant features for eeg signal classification of schizophrenic patients. Biomed Signal Process Control 2(2):122–134

Article  Google Scholar 

Sairamya N, Subathra M, George ST (2022) Automatic identification of schizophrenia using EEG signals based on discrete wavelet transform and RLNDiP technique with ANN. Expert Syst Appl 192:116230

Article  Google Scholar 

Sharma M, Acharya UR (2021) Automated detection of schizophrenia using optimal wavelet-based l1 norm features extracted from single-channel EEG. Cognit Neurodyn 15(4):661–674

Article  Google Scholar 

Sharma A, Rai JK, Tewari RP (2022) Schizophrenia detection using biomarkers from electroencephalogram signals. IETE J Res 68(4):3056–3064

Article  Google Scholar 

Shoeibi A, Sadeghi D, Moridian P, Ghassemi N, Heras J, Alizadehsani R, Khadem A, Kong Y, Nahavandi S, Zhang Y-D et al (2021) Automatic diagnosis of schizophrenia in EEG signals using CNN-LSTM models. Front Neuroinform. https://doi.org/10.3389/fninf.2021.777977

Article  PubMed  PubMed Central  Google Scholar 

Singh K, Singh S, Malhotra J (2021) Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients. Proc Inst Mech Eng Part H J Eng Med 235(2):167–184

Article  Google Scholar 

Siuly S, Khare SK, Bajaj V, Wang H, Zhang Y (2020) A computerized method for automatic detection of schizophrenia using EEG signals. IEEE Trans Neural Syst Rehabilit Eng 28(11):2390–2400

Article  Google Scholar 

Sponheim SR, Clementz BA, Iacono WG, Beiser M (2000) Clinical and biological concomitants of resting state eeg power abnormalities in schizophrenia. Biol Psychiatry 48(11):1088–1097

Article  CAS  PubMed  Google Scholar 

Sui J, Castro E, He H, Bridwell D, Du Y, Pearlson GD, Jiang T, Calhoun VD (2014) Combination of FMRI-SMRI-EEG data improves discrimination of schizophrenia patients by ensemble feature selection. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, IEEE, pp 3889–3892

Sun J, Cao R, Zhou M, Hussain W, Wang B, Xue J, Xiang J (2021) A hybrid deep neural network for classification of schizophrenia using EEG data. Sci Rep 11(1):1–16

Google Scholar 

Supakar R, Satvaya P, Chakrabarti P (2022) A deep learning-based model using RNN-LSTM for the detection of schizophrenia from EEG data. Comput Biol Med 151:106225

Article  PubMed  Google Scholar 

Tawhid MNA, Siuly S, Wang K, Wang H (2023) Automatic and efficient framework for identifying multiple neurological disorders from EEG signals. IEEE Trans Technol Soc 4(1):76–86

Article  Google Scholar 

Tikka DL, Singh AR, Tikka SK (2020) Social cognitive endophenotypes in schizophrenia: a study comparing first-episode schizophrenia patients and individuals at clinical-and familial-’at-risk for psychosis. Schizophr Res 215:157–166

Article  PubMed  Google Scholar 

Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11(2):100–113

Article  CAS  PubMed  Google Scholar 

Yin G, Chang Y, Zhao Y, Liu C, Yin M, Fu Y, Shi D, Wang L, Jin L, Huang J et al (2023) Automatic recognition of schizophrenia from brain-network features using graph convolutional neural network. Asian J Psychiatry 87:103687

Article  Google Schol

Comments (0)

No login
gif