Aldape, K. et al. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol. 16, 509–520 (2019).
Article CAS PubMed PubMed Central Google Scholar
Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).
Article CAS PubMed Google Scholar
Müller, D. M. et al. Timing of glioblastoma surgery and patient outcomes: a multicenter cohort study. Neurooncol. Adv. 3, vdab053 (2021).
PubMed PubMed Central Google Scholar
Jackson, C. et al. A systematic review and meta-analysis of supratotal versus gross total resection for glioblastoma. J. Neurooncol. 148, 419–431 (2020).
Yoo, J. et al. Patterns of recurrence according to the extent of resection in patients with IDH-wild-type glioblastoma: a retrospective study. J. Neurosurg. 137, 533–543 (2021).
Rapp, M. et al. Recurrence pattern analysis of primary glioblastoma. World Neurosurg. 103, 733–740 (2017).
Molinaro, A. M. et al. Association of maximal extent of resection of contrast-enhanced and non–contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol. 6, 495–503 (2020).
Article PubMed PubMed Central Google Scholar
Niyazi, M. et al. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother. Oncol. 184, 109663 (2023).
Waqar, M. et al. Rapid early progression (REP) of glioblastoma is an independent negative prognostic factor: results from a systematic review and meta-analysis. Neurooncol. Adv. 4, vdac075 (2022).
PubMed PubMed Central Google Scholar
Merkel, A. et al. Early postoperative tumor progression predicts clinical outcome in glioblastoma – implication for clinical trials. J. Neurooncol. 132, 249–254 (2017).
Article CAS PubMed PubMed Central Google Scholar
Pirzkall, A. et al. Tumor regrowth between surgery and initiation of adjuvant therapy in patients with newly diagnosed glioblastoma. Neuro Oncol. 11, 842–852 (2009).
Article CAS PubMed PubMed Central Google Scholar
Villanueva-Meyer, J. E., Han, S. J., Cha, S. & Butowski, N. A. Early tumor growth between initial resection and radiotherapy of glioblastoma: incidence and impact on clinical outcomes. J. Neurooncol. 134, 213–219 (2017).
Article PubMed PubMed Central Google Scholar
Palmer, J. D. et al. Rapid early tumor progression is prognostic in glioblastoma patients. Am. J. Clin. Oncol. 42, 481–486 (2019).
De Barros, A. et al. Impact on survival of early tumor growth between surgery and radiotherapy in patients with de novo glioblastoma. J. Neurooncol. 142, 489–497 (2019).
Xie, X. P. et al. Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy. Dev. Cell 57, 32–46.e8 (2022).
Article CAS PubMed PubMed Central Google Scholar
Waqar, M. et al. Early therapeutic interventions for newly diagnosed glioblastoma: rationale and review of the literature. Curr. Oncol. Rep. 24, 311–324 (2022).
Article CAS PubMed PubMed Central Google Scholar
Geurts, M. & van den Bent, M. J. Timing of radiotherapy in newly diagnosed glioblastoma: no need to rush? Neuro-Oncol. 20, 868–869 (2018).
Article PubMed PubMed Central Google Scholar
Buszek, S. M. et al. Optimal timing of radiotherapy following gross total or subtotal resection of glioblastoma: a real-world assessment using the National Cancer Database. Sci. Rep. 10, 4926 (2020).
Article CAS PubMed PubMed Central Google Scholar
Press, R. H. et al. Optimal timing of chemoradiotherapy after surgical resection of glioblastoma: stratification by validated prognostic classification. Cancer 126, 3255–3264 (2020).
Bagley, S. J. et al. Glioblastoma clinical trials: current landscape and opportunities for improvement. Clin. Cancer Res. 28, 594–602 (2022).
Article PubMed PubMed Central Google Scholar
Smith, S. J. et al. Metabolism-based isolation of invasive glioblastoma cells with specific gene signatures and tumorigenic potential. Neurooncol. Adv. 2, vdaa087 (2020).
PubMed PubMed Central Google Scholar
Garcia-Diaz, C. et al. Glioblastoma cell fate is differentially regulated by the microenvironments of the tumour bulk and infiltrative margin. Cell Reports 42, 112472 (2023).
Article CAS PubMed Google Scholar
Andrieux, G. et al. Spatially resolved transcriptomic profiles reveal unique defining molecular features of infiltrative 5ALA-metabolizing cells associated with glioblastoma recurrence. Genome Med. 15, 48 (2023).
Article CAS PubMed PubMed Central Google Scholar
Mathur, R. et al. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective. Cell 187, 446–463.e16 (2024).
Article CAS PubMed PubMed Central Google Scholar
Bastola, S. et al. Glioma-initiating cells at tumor edge gain signals from tumor core cells to promote their malignancy. Nat. Commun. 11, 4660 (2020).
Article CAS PubMed PubMed Central Google Scholar
Glas, M. et al. Residual tumor cells are unique cellular targets in glioblastoma. Ann. Neurol. 68, 264–269 (2010).
Article PubMed PubMed Central Google Scholar
Darmanis, S. et al. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 21, 1399–1410 (2017).
Article CAS PubMed PubMed Central Google Scholar
Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).
Article CAS PubMed PubMed Central Google Scholar
Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).
Article CAS PubMed Google Scholar
Minata, M. et al. Phenotypic plasticity of invasive edge glioma stem-like cells in response to ionizing radiation. Cell Rep. 26, 1893–1905.e7 (2019).
Article CAS PubMed PubMed Central Google Scholar
De Silva, M. I., Stringer, B. W. & Bardy, C. Neuronal and tumourigenic boundaries of glioblastoma plasticity. Trends Cancer 9, 223–236 (2023).
Li, C. et al. Tumor edge-to-core transition promotes malignancy in primary-to-recurrent glioblastoma progression in a PLAGL1/CD109-mediated mechanism. Neurooncol. Adv. 2, vdaa163 (2020).
Comments (0)