Targeting the glioblastoma resection margin with locoregional nanotechnologies

Aldape, K. et al. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol. 16, 509–520 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

Article  CAS  PubMed  Google Scholar 

Müller, D. M. et al. Timing of glioblastoma surgery and patient outcomes: a multicenter cohort study. Neurooncol. Adv. 3, vdab053 (2021).

PubMed  PubMed Central  Google Scholar 

Jackson, C. et al. A systematic review and meta-analysis of supratotal versus gross total resection for glioblastoma. J. Neurooncol. 148, 419–431 (2020).

Article  PubMed  Google Scholar 

Yoo, J. et al. Patterns of recurrence according to the extent of resection in patients with IDH-wild-type glioblastoma: a retrospective study. J. Neurosurg. 137, 533–543 (2021).

Article  PubMed  Google Scholar 

Rapp, M. et al. Recurrence pattern analysis of primary glioblastoma. World Neurosurg. 103, 733–740 (2017).

Article  PubMed  Google Scholar 

Molinaro, A. M. et al. Association of maximal extent of resection of contrast-enhanced and non–contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol. 6, 495–503 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Niyazi, M. et al. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother. Oncol. 184, 109663 (2023).

Article  PubMed  Google Scholar 

Waqar, M. et al. Rapid early progression (REP) of glioblastoma is an independent negative prognostic factor: results from a systematic review and meta-analysis. Neurooncol. Adv. 4, vdac075 (2022).

PubMed  PubMed Central  Google Scholar 

Merkel, A. et al. Early postoperative tumor progression predicts clinical outcome in glioblastoma – implication for clinical trials. J. Neurooncol. 132, 249–254 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pirzkall, A. et al. Tumor regrowth between surgery and initiation of adjuvant therapy in patients with newly diagnosed glioblastoma. Neuro Oncol. 11, 842–852 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Villanueva-Meyer, J. E., Han, S. J., Cha, S. & Butowski, N. A. Early tumor growth between initial resection and radiotherapy of glioblastoma: incidence and impact on clinical outcomes. J. Neurooncol. 134, 213–219 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Palmer, J. D. et al. Rapid early tumor progression is prognostic in glioblastoma patients. Am. J. Clin. Oncol. 42, 481–486 (2019).

Article  PubMed  Google Scholar 

De Barros, A. et al. Impact on survival of early tumor growth between surgery and radiotherapy in patients with de novo glioblastoma. J. Neurooncol. 142, 489–497 (2019).

Article  PubMed  Google Scholar 

Xie, X. P. et al. Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy. Dev. Cell 57, 32–46.e8 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waqar, M. et al. Early therapeutic interventions for newly diagnosed glioblastoma: rationale and review of the literature. Curr. Oncol. Rep. 24, 311–324 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geurts, M. & van den Bent, M. J. Timing of radiotherapy in newly diagnosed glioblastoma: no need to rush? Neuro-Oncol. 20, 868–869 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Buszek, S. M. et al. Optimal timing of radiotherapy following gross total or subtotal resection of glioblastoma: a real-world assessment using the National Cancer Database. Sci. Rep. 10, 4926 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Press, R. H. et al. Optimal timing of chemoradiotherapy after surgical resection of glioblastoma: stratification by validated prognostic classification. Cancer 126, 3255–3264 (2020).

Article  PubMed  Google Scholar 

Bagley, S. J. et al. Glioblastoma clinical trials: current landscape and opportunities for improvement. Clin. Cancer Res. 28, 594–602 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Smith, S. J. et al. Metabolism-based isolation of invasive glioblastoma cells with specific gene signatures and tumorigenic potential. Neurooncol. Adv. 2, vdaa087 (2020).

PubMed  PubMed Central  Google Scholar 

Garcia-Diaz, C. et al. Glioblastoma cell fate is differentially regulated by the microenvironments of the tumour bulk and infiltrative margin. Cell Reports 42, 112472 (2023).

Article  CAS  PubMed  Google Scholar 

Andrieux, G. et al. Spatially resolved transcriptomic profiles reveal unique defining molecular features of infiltrative 5ALA-metabolizing cells associated with glioblastoma recurrence. Genome Med. 15, 48 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathur, R. et al. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective. Cell 187, 446–463.e16 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bastola, S. et al. Glioma-initiating cells at tumor edge gain signals from tumor core cells to promote their malignancy. Nat. Commun. 11, 4660 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glas, M. et al. Residual tumor cells are unique cellular targets in glioblastoma. Ann. Neurol. 68, 264–269 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Darmanis, S. et al. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 21, 1399–1410 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

Article  CAS  PubMed  Google Scholar 

Minata, M. et al. Phenotypic plasticity of invasive edge glioma stem-like cells in response to ionizing radiation. Cell Rep. 26, 1893–1905.e7 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Silva, M. I., Stringer, B. W. & Bardy, C. Neuronal and tumourigenic boundaries of glioblastoma plasticity. Trends Cancer 9, 223–236 (2023).

Article  PubMed  Google Scholar 

Li, C. et al. Tumor edge-to-core transition promotes malignancy in primary-to-recurrent glioblastoma progression in a PLAGL1/CD109-mediated mechanism. Neurooncol. Adv. 2, vdaa163 (2020).

PubMed  PubMed Central 

Comments (0)

No login
gif