World Health Organization. Neurological Disorders: Public Health Challenges https://www.who.int/publications/i/item/9789241563369 (WHO, 2006).
UN News. Nearly 1 in 6 of world’s population suffer from neurological disorders – UN report. United Nations https://news.un.org/en/story/2007/02/210312 (2007).
Simpkin, V., Namubiru-Mwaura, E., Clarke, L. & Mossialos, E. Investing in health R&D: where we are, what limits us, and how to make progress in Africa. BMJ Glob. Health 4, e001047 (2019).
Article PubMed PubMed Central Google Scholar
Akinyemi, R. O. et al. Neurogenomics in Africa: perspectives, progress, possibilities and priorities. J. Neurol. Sci. 366, 213–223 (2016).
Article CAS PubMed PubMed Central Google Scholar
Campbell, M. C. & Tishkoff, S. A. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu. Rev. Genomics Hum. Genet. 9, 403–433 (2008).
Article CAS PubMed PubMed Central Google Scholar
Fortes-Lima, C. A. et al. The genetic legacy of the expansion of Bantu-speaking peoples in Africa. Nature 625, 540–547 (2024).
Article CAS PubMed Google Scholar
Pilkington, M. M. et al. Contrasting signatures of population growth for mitochondrial DNA and Y chromosomes among human populations in Africa. Mol. Biol. Evol. 25, 517–525 (2008).
Article CAS PubMed Google Scholar
Quintana-Murci, L. et al. Maternal traces of deep common ancestry and asymmetric gene flow between Pygmy hunter–gatherers and Bantu-speaking farmers. Proc. Natl Acad. Sci. USA 105, 1596–1601 (2008).
Article CAS PubMed PubMed Central Google Scholar
Reed, F. A. & Tishkoff, S. A. African human diversity, origins and migrations. Curr. Opin. Genet. Dev. 16, 597–605 (2006).
Article CAS PubMed Google Scholar
Choudhury, A. et al. High-depth African genomes inform human migration and health. Nature 586, 741–748 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wonkam, A. et al. Five priorities of African genomics research: the next frontier. Annu. Rev. Genomics Hum. Genet. 23, 499–521 (2022).
Article CAS PubMed Google Scholar
Wonkam, A. Sequence three million genomes across Africa. Nature 590, 209–211 (2021).
Article CAS PubMed PubMed Central Google Scholar
Fan, S. et al. Whole-genome sequencing reveals a complex African population demographic history and signatures of local adaptation. Cell 186, 923–939.e14 (2023).
Article CAS PubMed PubMed Central Google Scholar
Sfaihi, L. et al. Ataxia-telangiectasia in the south of Tunisia: a study of 11 cases. Tunis. Med. 93, 511–515 (2015).
Steinlein, O. K. et al. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 11, 201–203 (1995).
Article CAS PubMed Google Scholar
Yamamah, G. et al. Prevalence of consanguineous marriages in South Sinai, Egypt. J. Biosoc. Sci. 45, 31–39 (2013).
Article CAS PubMed Google Scholar
Bocoum, A. et al. The first case of Huntington’s disease like 2 in Mali, West Africa. Tremor Other Hyperkinet Mov. 14, 15 (2024).
Anderson, D. G. et al. Comparison of the Huntington’s disease like 2 and Huntington’s disease clinical phenotypes. Mov. Disord. Clin. Pract. 6, 302–311 (2019).
Article PubMed PubMed Central Google Scholar
Baine, F. K., Krause, A. & Greenberg, L. J. The frequency of Huntington disease and Huntington disease-like 2 in the South African population. Neuroepidemiology 46, 198–202 (2016).
Bamba, S. et al. Case report: novel variants cause developmental and epileptic encephalopathy in three unrelated families from Mali. Front. Genet. 15, 1412442 (2024).
Article PubMed PubMed Central Google Scholar
Cissé, L. et al. Genetic profile of progressive myoclonic epilepsy in Mali reveals novel findings. Front. Neurol. 15, 1455467 (2024).
Article PubMed PubMed Central Google Scholar
Aridon, P. et al. Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial epilepsy with nocturnal wandering and ictal fear. Am. J. Hum. Genet. 79, 342–350 (2006).
Article CAS PubMed PubMed Central Google Scholar
Hirose, S. et al. A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy. Neurology 53, 1749–1753 (1999).
Article CAS PubMed Google Scholar
Lehesjoki, A. E. et al. Localization of a gene for progressive myoclonus epilepsy to chromosome 21q22. Proc. Natl Acad. Sci. USA 88, 3696–3699 (1991).
Article CAS PubMed PubMed Central Google Scholar
Aiyesimoju, A. B., Osuntokun, B. O., Bademosi, O. & Adeuja, A. O. Hereditary neurodegenerative disorders in Nigerian Africans. Neurology 34, 361–362 (1984).
Article CAS PubMed Google Scholar
Ben Hamida, M., El Younsi, C. & Isautier, C. Degenerative changes in cerebrospinal fluid electrophoresis recordings during spinocerebellar hereditary degenerative disorders. a study of 111 cases (author’s transl) [French]. Rev. Neurol. 136, 25–32 (1980).
Grunitzky, E. K., Gnamey, D. R., Nonon, S. A. & Balogou, A. Huntington disease in a large family in southern Togo [French]. Ann. Med. Interne 146, 581–583 (1995).
Scrimgeour, E. M. Huntington’s disease in Tanzania. J. Med. Genet. 18, 200–203 (1981).
Article CAS PubMed PubMed Central Google Scholar
Triki, C. et al. Clinical, biological and genetic study of 24 patients with ataxia telangiectasia from southern Tunisia [French]. Rev. Neurol. (Paris) 156, 634–637 (2000).
Silber, E., Kromberg, J., Temlett, J. A., Krause, A. & Saffer, D. Huntington’s disease confirmed by genetic testing in five African families. Mov. Disord. 13, 726–730 (1998).
Article CAS PubMed Google Scholar
Ranum, L. P. et al. Molecular and clinical correlations in spinocerebellar ataxia type I: evidence for familial effects on the age at onset. Am. J. Hum. Genet. 55, 244–252 (1994).
CAS PubMed PubMed Central Google Scholar
Ranum, L. P. et al. Spinocerebellar ataxia type 1 and Machado-Joseph disease: incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia. Am. J. Hum. Genet. 57, 603–608 (1995).
CAS PubMed PubMed Central Google Scholar
Coutinho, P. et al. Clinical heterogeneity of autosomal recessive spastic paraplegias: analysis of 106 patients in 46 families. Arch. Neurol. 56, 943–949 (1999).
Article CAS PubMed Google Scholar
Klebe, S. et al. Autosomal recessive spastic paraplegia (SPG30) with mild ataxia and sensory neuropathy maps to chromosome 2q37.3. Brain 129, 1456–1462 (2006).
Comments (0)