Fu Z, et al. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93.
Article CAS PubMed PubMed Central Google Scholar
Kondrashov A, et al. Antibody-Drug Conjugates in Solid Tumor Oncology: An Effectiveness Payday with a Targeted Payload. Pharmaceutics. 2023;15(8):2160.
Article CAS PubMed PubMed Central Google Scholar
Coleman N, et al. (2023) Antibody-drug conjugates in lung cancer: dawn of a new era? npj Prec Onc 7(1):5. https://doi.org/10.1038/s41698-022-00338-9
Desai A, et al. Antibody-drug conjugates: A promising novel therapeutic approach in lung cancer. Lung Cancer. 2022;163:96–106.
Article CAS PubMed Google Scholar
Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18(6):327–44.
Article PubMed PubMed Central Google Scholar
de Goeij BE, et al. High turnover of tissue factor enables efficient intracellular delivery of antibody-drug conjugates. Mol Cancer Ther. 2015;14(5):1130–40.
Nguyen TD, Bordeau BM, Balthasar JP. Mechanisms of ADC Toxicity and Strategies to Increase ADC Tolerability. Cancers. 2023;15(3):713.
Article CAS PubMed PubMed Central Google Scholar
Yu J, Song Y, Tian W. How to select IgG subclasses in developing anti-tumor therapeutic antibodies. J Hematol Oncol. 2020;13(1):45.
Article CAS PubMed PubMed Central Google Scholar
Mecklenburg L. A Brief Introduction to Antibody-Drug Conjugates for Toxicologic Pathologists. Toxicol Pathol. 2018;46(7):746–52.
Article CAS PubMed Google Scholar
Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9(1):33–46.
Article CAS PubMed Google Scholar
Su Z, et al. Antibody–drug conjugates: Recent advances in linker chemistry. Acta Pharmaceutica Sinica B. 2021;11(12):3889–907.
Article CAS PubMed PubMed Central Google Scholar
Bargh JD, et al. Cleavable linkers in antibody-drug conjugates. Chem Soc Rev. 2019;48(16):4361–74.
Article CAS PubMed Google Scholar
Yamazaki CM, et al. Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nat Commun. 2021;12(1):3528.
Article CAS PubMed PubMed Central Google Scholar
Rosner S, et al. Antibody-drug conjugates for lung cancer: payloads and progress. Am Soc Clin Oncol Educ Book. 2023;43:e389968. https://doi.org/10.1200/EDBK_389968.
Tang H, et al. The analysis of key factors related to adcs structural design. Front Pharmacol. 2019;10:373.
Article CAS PubMed PubMed Central Google Scholar
Conilh L, et al. Payload diversification: a key step in the development of antibody–drug conjugates. J Hematol Oncol. 2023;16(1):3.
Article CAS PubMed PubMed Central Google Scholar
Wang Z, et al. Antibody-drug conjugates: Recent advances in payloads. Acta Pharm Sin B. 2023;13(10):4025–59.
Article CAS PubMed PubMed Central Google Scholar
Hong KB, An H. Degrader-antibody conjugates: emerging new modality. J Med Chem. 2023;66(1):140–8.
Article CAS PubMed Google Scholar
Baah S, Laws M, Rahman KM. Antibody–drug conjugates—a tutorial review. Molecules. 2021;26(10):2943.
Article CAS PubMed PubMed Central Google Scholar
Li F, et al. Intracellular Released Payload Influences Potency and Bystander-Killing Effects of Antibody-Drug Conjugates in Preclinical Models. Cancer Res. 2016;76(9):2710–9.
Article CAS PubMed Google Scholar
Redman JM, Hill EM, AlDeghaither D, Weiner LM. Mechanisms of action of therapeutic antibodies for cancer. Molecular Immunol. 2015;67(2):28–45.
Kovtun YV, Goldmacher VS. Cell killing by antibody-drug conjugates. Cancer Lett. 2007;255(2):232–40.
Article CAS PubMed Google Scholar
Ricordel C, et al. Safety and efficacy of tusamitamab ravtansine (SAR408701) in long-term treated patients with nonsquamous non–small cell lung cancer (NSQ NSCLC) expressing carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). Journal of Clinical Oncology, 2022. 40(16_suppl):9039–9039. https://doi.org/10.1200/JCO.2022.40.16_suppl.9039
Wang Z. ErbB Receptors and Cancer. Methods Mol Biol. 2017;1652:3–35.
Article CAS PubMed Google Scholar
Arcila ME, et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin Cancer Res. 2012;18(18):4910–8.
Article CAS PubMed Google Scholar
Pellegrini C, et al. HER-2/Neu alterations in non-small cell lung cancer: a comprehensive evaluation by real time reverse transcription-PCR, fluorescence in situ hybridization, and immunohistochemistry. Clin Cancer Res. 2003;9(10 Pt 1):3645–52.
Tomizawa K, et al. Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers. Lung Cancer. 2011;74(1):139–44.
Genentech I, Kadcyla (ado-trastuzumab emtansine) [Package insert]. 2022, U.S. Food and Drug Administration: South San Francisco, CA
Li BT, et al. Ado-Trastuzumab Emtansine for Patients With HER2-Mutant Lung Cancers: Results From a Phase II Basket Trial. J Clin Oncol. 2018;36(24):2532–7.
Article CAS PubMed PubMed Central Google Scholar
Peters S, et al. Trastuzumab Emtansine (T-DM1) in Patients with Previously Treated HER2-Overexpressing Metastatic Non-Small Cell Lung Cancer: Efficacy, Safety, and Biomarkers. Clin Cancer Res. 2019;25(1):64–72.
Article CAS PubMed Google Scholar
Iwama E, et al. Trastuzumab emtansine for patients with non-small cell lung cancer positive for human epidermal growth factor receptor 2 exon-20 insertion mutations. Eur J Cancer. 2022;162:99–106.
Article CAS PubMed Google Scholar
Daiichi Sankyo, I.a.A., Enhertu (fam-trastuzumab deruxtecan-nxki) [Package insert]. 2024, U.S. Food and Drug Administration: Tokyo, Japan, and Wilmington, DE
Tsurutani J, et al. Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid Tumors. Cancer Discov. 2020;10(5):688–701.
Article CAS PubMed PubMed Central Google Scholar
Li BT, et al. Trastuzumab Deruxtecan in HER2-Mutant Non–Small-Cell Lung Cancer. N Engl J Med. 2022;386(3):241–51.
Article CAS PubMed Google Scholar
Smit EF, et a
Comments (0)