Synthesis and optimization of fluoxetine-loaded polymeric nanoparticles for dual therapeutic applications in cancer and depression

Malik S, Muhammad K, Waheed Y. Nanotechnology: A revolution in modern industry. Molecules. 2023;28(2):661. https://doi.org/10.3390/molecules28020661.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Izci M, et al. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem Rev. 2021;121(3):1746–803. https://doi.org/10.1021/acs.chemrev.0c00779.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Raj S, et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol. 2021. Elsevier. https://doi.org/10.1016/j.semcancer.2019.11.002.

Article  PubMed  Google Scholar 

Sahu T, et al. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Del Sci Technol. 2021;63:102487. https://doi.org/10.1016/j.jddst.2021.102487.

Article  CAS  Google Scholar 

Hassan SS, et al. Drug delivery systems between metal, liposome, and polymer-based nanomedicine: a review. Eur Chem Bull. 2020;9(3):91–102. https://doi.org/10.17628/ecb.2020.9.91-102.

Article  CAS  Google Scholar 

Begines B, et al. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials. 2020;10(7):1403. https://doi.org/10.3390/nano10071403.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ukkund SJ, et al. Dextran nanoparticles: Preparation and applications, in Polysaccharide Nanoparticles. Elsevier. 2022; pp 1–31. https://doi.org/10.1016/B978-0-12-822351-2.00019-X.

Rai R, Alwani S, Badea I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers. 2019;11(4):745. https://doi.org/10.3390/polym11040745.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Procyshyn RM, Bezchlibnyk-Butler KZ, Kim DD. Clinical handbook of psychotropic drugs. Hogrefe Publishing GmbH. 2023. https://doi.org/10.1027/00632-000.

Yang Z, et al. Antitumor effect of fluoxetine on chronic stress-promoted lung cancer growth via suppressing kynurenine pathway and enhancing cellular immunity. Front Pharmacol. 2021;12:685898. https://doi.org/10.3389/fphar.2021.685898.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hosseinimehr SJ, et al. Fluoxetine as an antidepressant medicine improves the effects of ionizing radiation for the treatment of glioma. J Bioenerg Biomembr. 2020;52:165–74. https://doi.org/10.1007/s10863-020-09833-9.

Article  PubMed  CAS  Google Scholar 

Ong JC-L, Sun F, Chan E. Development of stealth liposome coencapsulating doxorubicin and fluoxetine. J Liposome Res. 2011;21(4):261–71. https://doi.org/10.3109/08982104.2010.545070.

Article  PubMed  CAS  Google Scholar 

Po WW, et al. Fluoxetine simultaneously induces both apoptosis and autophagy in human gastric adenocarcinoma cells. Biomolecules & Therapeutics. 2020;28(2):202. https://doi.org/10.4062/biomolther.2019.103.

Article  CAS  Google Scholar 

Kadasah SF, Alqahtani AM, Radwan MO. Beyond psychotropic: Repurposing of fluoxetine toward cancer management and its molecular mechanisms. 2024. https://doi.org/10.20944/preprints202402.0611.v1.

Salleh MR. The burden of mental illness: An emerging global disaster. J Clin Health Sci. 2018;3(1):1–8.

Article  Google Scholar 

Liu Y, Zhao J, Guo W. Emotional roles of mono-aminergic neurotransmitters in major depressive disorder and anxiety disorders. Front Psychol. 2018;9:2201. https://doi.org/10.3389/fpsyg.2018.02201.

Article  PubMed  PubMed Central  Google Scholar 

Corponi F, Fabbri C, Serretti A. Antidepressants: indications, contraindications, interactions, and side effects. NeuroPsychopharmacotherapy. 2020; pp1–38. https://doi.org/10.1007/978-3-319-56015-1_29-1.

Mandrioli R, Protti M, Mercolini L. New-generation, non-SSRI antidepressants: therapeutic drug monitoring and pharmacological interactions. Part 1: SNRIs, SMSs, SARIs. Curr Med Chem. 2018;25(7):772–92. https://doi.org/10.2174/0929867324666170712165042.

Article  PubMed  CAS  Google Scholar 

Nikolaou M, et al. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metas. 2018;35:309–18. https://doi.org/10.1007/s10585-018-9903-0.

Article  CAS  Google Scholar 

Sagnella SM, et al. Dextran-based doxorubicin nanocarriers with improved tumor penetration. Biomacromol. 2014;15(1):262–75. https://doi.org/10.1021/bm401526d.

Article  CAS  Google Scholar 

Naz A, et al. Fabrication, characterization and therapeutic evaluation of fluoxetine-dextran nanoparticles. ChemistrySelect. 2023;8(22):e202204110. https://doi.org/10.1002/slct.202204110.

Article  CAS  Google Scholar 

Bhattacharjee S. DLS and zeta potential–what they are and what they are not? J Control Release. 2016;235:337–51. https://doi.org/10.1016/j.jconrel.2016.06.017.

Article  PubMed  CAS  Google Scholar 

Shoaib M, et al. Green synthesis and characterization of silver-entecavir nanoparticles with stability determination. Arab J Chem. 2021;14(3):102974. https://doi.org/10.1016/j.arabjc.2020.102974.

Article  CAS  Google Scholar 

Liu Y, et al. Development of high-drug-loading nanoparticles. ChemPlusChem. 2020;85(9):2143–57. https://doi.org/10.1002/cplu.202000496.

Article  PubMed  CAS  Google Scholar 

Wang F, et al. Polyelectrolyte three layer nanoparticles of chitosan/dextran sulfate/chitosan for dual drug delivery. Colloids Surf, B. 2020;190:110925. https://doi.org/10.1016/j.colsurfb.2020.110925.

Article  CAS  Google Scholar 

Zhang M, et al. A pH-sensitive oxidized-dextran based double drug-loaded hydrogel with high antibacterial properties. Int J Biol Macromol. 2021;182:385–93. https://doi.org/10.1016/j.ijbiomac.2021.03.169.

Article  PubMed  CAS  Google Scholar 

Bhattacharya S. Fabrication and characterization of chitosan-based polymeric nanoparticles of Imatinib for colorectal cancer targeting application. Int J Biol Macromol. 2020;151:104–15. https://doi.org/10.1016/j.ijbiomac.2020.02.151.

Article  PubMed  CAS  Google Scholar 

Pei X, et al. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep. 2020;10(1):2717. https://doi.org/10.1038/s41598-020-59624-w.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Alvarez J-C, et al. Determination of fluoxetine and its metabolite norfluoxetine in serum and brain areas using high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Sci Appl. 1998;707(1–2):175–80. https://doi.org/10.1016/S0378-4347(97)00588-4.

Article  PubMed  CAS  Google Scholar 

Ferraris C, et al. Overcoming the blood–brain barrier: successes and challenges in developing nanoparticle-mediated drug delivery systems for the treatment of brain tumours. Int J Nanomed. 2020;15:2999–3022. https://doi.org/10.2147/IJN.S231479.

Article  CAS  Google Scholar 

Fathi M, et al. Simultaneous determination of fluoxetine, norfluoxetine, paroxetine, sertraline and reboxetine in serum as acetylated derivatives by gas chromatography-selected ion monitoring mass spectrometry (GC-SIM-MS): 29. Ther Drug Monit. 2005;27(2):217–8. https://doi.org/10.1097/00007691-200504000-00045.

Article  Google Scholar 

Sarıkaya M, et al. Sensitive determination of Fluoxetine and Citalopram antidepressants in urine and wastewater samples by liquid chromatography coupled with photodiode array detector. J Chromatogr A. 2021;1648:462215. https://doi.org/10.1016/j.chroma.2021.462215.

Article  PubMed  CAS  Google Scholar 

Marques LA, et al. Optimization and validation of an SBSE–HPLC–FD method using laboratory-made stir bars for fluoxetine determination in human plasma. Biomed Chromatogr. 2019;33(1):e4398. https://doi.org/10.1002/bmc.4398.

Article  PubMed 

Comments (0)

No login
gif