Harwansh RK, Deshmukh R. Breast cancer: an insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs. Crit Rev Oncol Hematol. 2020. https://doi.org/10.1016/j.critrevonc.2020.103070.
Shah K, Chhabra S, Singh Chauhan N. Chemistry and anticancer activity of cardiac glycosides: a review. Chem Biol Drug Des. 2022;100(3):364–75. https://doi.org/10.1111/cbdd.14096.
da Cunha Xavier J, dos Santos HS, Machado Marinho M, Nunes da Rocha M, Rodrigues Teixeira AM, Coutinho HDM, et al. Chalcones as potent agents against staphylococcus aureus: A computational approach. Lett Drug Des Discov. 2023;21(4):684-700. https://doi.org/10.2174/1570180820666230120145921.
Sharma H, Singh S, Pathak S. Pathogenesis of COVID-19, Disease Outbreak: A review. Curr Pharm Biotechnol. 2021;22(12):15910–1601. https://doi.org/10.2174/1389201022666210127113441.
Krishna G, Shah K. Current drifts in design and development of prodrugs. ECS Trans. 2022;107(1):18939. https://doi.org/10.1149/10701.18939ecst.
Mishra R, Chaudhary K, Mishra I. AI in health science: a perspective. Curr Pharm Biotechnol. 2022;24(9):1149–63. https://doi.org/10.2174/1389201023666220929145220.
Packer S, Mercado N, Haridat A. Bioelectronic medicine ethical concerns. Cold Spring Harb Perspect Med. 2019;9(10):a034363. https://doi.org/10.1101/cshperspect.a034363.
Article PubMed PubMed Central Google Scholar
Horch KW, Dhillon GS. Neuroprosthetics Theory and Practice. J Chem Inf Model. 2004.
Richardson RT, Ibbotson MR, Thompson AC, Wise AK, Fallon JB. Optical stimulation of neural tissue. Healthc Technol Lett. 2020;7(3):58–65. https://doi.org/10.1049/htl.2019.0114.
Article PubMed PubMed Central Google Scholar
Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature. 2016;540(7633):379–85. https://doi.org/10.1038/nature21004.
Merrill DR, Bikson M, Jefferys JGR. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141(2):171–98. https://doi.org/10.1016/j.jneumeth.2004.10.020.
Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275–309. https://doi.org/10.1146/annurev.bioeng.10.061807.160518.
Long Y, Li J, Yang F, Wang J, Wang X. Wearable and implantable electroceuticals for therapeutic electrostimulations. Adv Sci. 2021;8(8):2004023. https://doi.org/10.1002/advs.202004023.
Zhao M, Pu J, Forrester JV, McCaig CD. Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. FASEB J. 2002;16(8):857–9. https://doi.org/10.1096/fj.01-0811fje.
Slavin KV. Spinal stimulation for Pain: future applications. Neurotherapeutics. 2014;11(3):535–42. https://doi.org/10.1007/s13311-014-0273-2.
Article PubMed PubMed Central Google Scholar
Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav. 2018;88:2–10. https://doi.org/10.1016/j.yebeh.2018.06.032.
Strollo PJ, Soose RJ, Maurer JT, de Vries N, Cornelius J, Froymovich O, et al. Upper-airway stimulation for obstructive sleep apnea. N Engl J Med. 2014;370:139–49. https://doi.org/10.1056/nejmoa1308659.
Sacramento JF, Chew DJ, Melo BF, Donegá M, Dopson W, Guarino MP, et al. Bioelectronic modulation of carotid sinus nerve activity in the rat: a potential therapeutic approach for type 2 diabetes. Diabetologia. 2018;61. https://doi.org/10.1007/s00125-017-4533-7
Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113(29):8284–9. https://doi.org/10.1073/pnas.1605635113.
Article PubMed PubMed Central Google Scholar
Payne SC, Furness JB, Stebbing MJ. Bioelectric neuromodulation for gastrointestinal disorders: Effectiveness and mechanisms. Nat Rev Gastroenterol Hepatol. 2019;16:89–105. https://doi.org/10.1038/s41575-018-0078-6.
Berthoud HR, Neuhuber WL. Vagal mechanisms as neuromodulatory targets for the treatment of metabolic disease. Ann N Y Acad Sci. 2019;1454(1):42–55. https://doi.org/10.1111/nyas.14182.
Article PubMed PubMed Central Google Scholar
García-Alías G, del Valle J, Delgado-Martínez I, Navarro X. Electroceutical therapies for injuries of the nervous system. Handb Innov Cent Nerv Syst Regen Med. 2020 511-537. https://doi.org/10.1016/B978-0-12-818084-6.00014-3.
Bornstein SR, Ben-Haim S. Electroceuticals for the metabolic syndrome. Horm Metab Res. 2015;47(06):401–3. https://doi.org/10.1055/s-0035-1548939.
Kloth LC. Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Low Extrem Wounds. 2005. https://doi.org/10.1177/1534734605275733.
Tai G, Wang F, Wada T, Forrester JV, Guo A, Reid B, et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature. 2006;442(7101):457–60. https://doi.org/10.1038/nature04925.
Cho MR, Thatte HS, Lee RC, Golan DE. Integrin-dependent human macrophage migration induced by oscillatory electrical stimulation. Ann Biomed Eng. 2000;28:234–43. https://doi.org/10.1114/1.263.
Bourguignon GJ, Bourguignon LYW. Electric stimulation of protein and DNA synthesis in human fibroblasts. FASEB J. 1987;1(5):398–402. https://doi.org/10.1096/fasebj.1.5.3678699.
Goldman RJ, Brewley BI, Golden MA. Electrotherapy reoxygenates inframalleolar ischemic wounds on diabetic patients: A case series. Adv Skin Wound Care. 2002;15(3):112–20. https://doi.org/10.1097/00129334-200205000-00006.
Castana O, Dimitrouli A, Argyrakos T, Theodorakopoulou E, Stampolidis N, Papadopoulos E, et al. Wireless electrical stimulation: an innovative powerful tool for the treatment of a complicated chronic ulcer. Int J Low Extrem Wounds. 2013;12. https://doi.org/10.1177/1534734613476517.
Ramadhinara A, Poulas K. Use of wireless microcurrent stimulation for the treatment of diabetes-related wounds: 2 case reports. Adv Ski Wound Care. 2013;26(1):1–4. https://doi.org/10.1097/01.ASW.0000425942.32993.e9.
Kim H, Park S, Housler G, Marcel V, Cross S, Izadjoo M. An overview of the efficacy of a next generation electroceutical wound care device. Mil Med. 2016;181:184–90. https://doi.org/10.7205/MILMED-D-15-00157.
Hoffman H. Acceleration and retardation of the process of axon-sprouting in partially devervated muscles. Aust J Exp Biol Med Sci. 1952;6:541–66. https://doi.org/10.1038/icb.1952.52.
Nix WA, Hopf HC. Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res. 1983;271(1):21–5. https://doi.org/10.1016/0006-8993(83)90360-8.
Pockett S, Gavin RM. Acceleration of peripheral nerve regeneration after crush injury in rat. Neurosci Lett. 1985;59(2):221–4. https://doi.org/10.1016/0304-3940(85)90203-4.
Al-Majed AA, Neumann CM, Brushart TM, Gordon T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci. 2000;20(7):2602–8. https://doi.org/10.1523/jneurosci.20-07-02602.2000.
Article PubMed PubMed Central Google Scholar
English AW, Schwartz G, Meador W, Sabatier MJ, Mulligan A. Electrical stimulation promotes peripheral axon regeneration by enhanced neuronal neurotrophin signaling. Dev Neurobiol. 2007;67(2):158–72. https://doi.org/10.1002/dneu.20339.
Article PubMed PubMed Central Google Scholar
Gordon T, Udina E, Verge VMK, Posse De Chaves EI. Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system. Motor Control. 2009;13(4):412-441. https://doi.org/10.1123/mcj.13.4.412.
Foecking EM, Fargo KN, Coughlin LM, Kim JT, Marzo SJ, Jones KJ. Single session of brief electrical stimulation immediately following crush injury enhances functional recovery of rat facial nerve. J Rehabil Res Dev. 2012;49(3):451–8. https://doi.org/10.1682/jrrd.2011.03.0033.
Willand MP, Nguyen MA, Borschel GH, Gordon T. Electrical stimulation to promote peripheral nerve regeneration. Neurorehabil Neural Repair. 2016;30(5). https://doi.org/10.1177/1545968315604399
Comments (0)