Xu M, Han X, Xiong H, Gao Y, Xu B, Zhu G, Li J. Cancer nanomedicine: emerging strategies and therapeutic potentials. Molecules. 2023;28:5145. https://doi.org/10.3390/molecules28135145.
Article PubMed PubMed Central CAS Google Scholar
Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE open med. 2021;9:20503121211034370. https://doi.org/10.1177/20503121211034366.
Article PubMed PubMed Central Google Scholar
Mondal J, Panigrahi A, Khuda-Bukhsh A. Conventional chemotherapy: problems and scope for combined therapies with certain herbal products and dietary supplements. Austin J Mol Cell Biol. 2014;1:1–10.
Olgen S, Kotra LP. Drug repurposing in the development of anticancer agents. Curr med chem. 2019;26:5410–27. https://doi.org/10.2174/0929867325666180713155702.
Article PubMed CAS Google Scholar
Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26. https://doi.org/10.1038/nrc3599.
Article PubMed CAS Google Scholar
Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C. Drug repurposing: progress, challenges and recommendations. Nat rev Drug discov. 2019;18:41–58. https://doi.org/10.1038/nrd.2018.168.
Article PubMed CAS Google Scholar
Shashaani H, Faramarzpour M, Hassanpour M, Namdar N, Alikhani A, Abdolahad M. Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells. Biosens Bioelectron. 2016;85:363–70. https://doi.org/10.1016/j.bios.2016.04.081.
Article PubMed CAS Google Scholar
Joe NS, Godet I, Milki N, Ain NU, Oza HH, Riggins GJ, Gilkes DM. Mebendazole prevents distant organ metastases in part by decreasing ITGβ4 expression and cancer stemness. Breast Cancer Res. 2022;24:98. https://doi.org/10.1186/s13058-022-01591-3.
Article PubMed PubMed Central CAS Google Scholar
Sasaki J-I, Ramesh R, Chada S, Gomyo Y, Roth JA, Mukhopadhyay T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol Cancer Ther. 2002;1:1201–9.
Bai R-Y, Staedtke V, Wanjiku T, Rudek MA, Joshi A, Gallia GL, Riggins GJ. Brain penetration and efficacy of different mebendazole polymorphs in a mouse brain tumor model. Clin Cancer Res. 2015;21:3462–70. https://doi.org/10.1158/1078-0432.CCR-14-2681.
Article PubMed PubMed Central CAS Google Scholar
Williamson T, Bai R-Y, Staedtke V, Huso D, Riggins GJ. Mebendazole and a non-steroidal antiinflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget. 2016;7:68571–84. https://doi.org/10.18632/oncotarget.11851.
Article PubMed PubMed Central Google Scholar
Zhang L, Dratver MB, Yazal T, Dong K, Nguyen A, Yu G, Dao A, Dratver MB, Duhachek-Muggy S, Bhat K. Mebendazole potentiates radiation therapy in triple-negative breast cancer. Int J Rad Oncol Biol Phys. 2019;103:195–207. https://doi.org/10.1016/j.ijrobp.2018.08.046.
Domingues B, Lopes JM, Soares P, Pópulo H. Melanoma treatment in review. ImmunoTarget Ther. 2018;7:35–49. https://doi.org/10.2147/ITT.S134842.
Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene. 2003;22:3138–51. https://doi.org/10.1038/sj.onc.1206454.
Article PubMed CAS Google Scholar
Kefayat A, Hosseini M, Ghahremani F, Jolfaie NA, Rafienia M. Biodegradable and biocompatible subcutaneous implants consisted of pH-sensitive mebendazole-loaded/folic acidtargeted chitosan nanoparticles for murine triple-negative breast cancer treatment. J Nanobiotechnology. 2022;20:169. https://doi.org/10.1186/s12951-022-01380-2.
Article PubMed PubMed Central CAS Google Scholar
Patel RD, Patel AS, Patel HJ, Sarvepalli S, Patel K. Development of rapidly soluble mebendazole nanosuspension for colorectal cancer. J Drug Deliv Sci Technol. 2024;91: 105276. https://doi.org/10.1016/j.jddst.2023.105276.
Shrivastava S, Gidwani B, Kaur CD. Development of mebendazole loaded nanostructured lipid carriers for lymphatic targeting: Optimization, characterization, in-vitro and in-vivo evaluation. Particul Sci Technol. 2021;39:380–90. https://doi.org/10.1080/02726351.2020.1750515.
Kutkut M, Shakya AK, Nsairat H, El-Tanani M. Formulation, development, and in vitro evaluation of a nanoliposomal delivery system for mebendazole and gefitinib. J Applied Pharma Sci. 2023;13:165–78. https://doi.org/10.7324/JAPS.2023.110512.
Fahmy AM, El-Setouhy DA, Habib BA, Tayel SA. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: entrapment efficiency vs particle size. AAPS PharmSciTech. 2019;20:95. https://doi.org/10.1208/s12249-019-1306-2.
Article PubMed CAS Google Scholar
ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv. 2016;23:2115–23. https://doi.org/10.3109/10717544.2014.942811.
Article PubMed CAS Google Scholar
Gillet A, Compère P, Lecomte F, Hubert P, Ducat E, Evrard B, Piel G. Liposome surface charge influence on skin penetration behaviour. Int J Pharm. 2011;411:223–31. https://doi.org/10.1016/j.ijpharm.2011.03.049.
Article PubMed CAS Google Scholar
Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release. 2016;240:109–26. https://doi.org/10.1016/j.jconrel.2015.11.009.
Article PubMed CAS Google Scholar
Sahu P, Kashaw SK, Jain S, Sau S, Iyer AK. Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. J Control Release. 2017;253:122–36. https://doi.org/10.1016/j.jconrel.2017.03.023.
Article PubMed CAS Google Scholar
Sahu P, Kashaw SK, Sau S, Kushwah V, Jain S, Agrawal RK, Iyer AK. pH Responsive 5-fluorouracil loaded biocompatible nanogels for topical chemotherapy of aggressive melanoma. Colloids Surf B Biointerfaces. 2019;174:232–45. https://doi.org/10.1016/j.colsurfb.2018.11.018.
Article PubMed CAS Google Scholar
Cho E, Lee JS, Webb K. Formulation and characterization of poloxamine-based hydrogels as tissue sealants. Acta Biomater. 2012;8:2223–32. https://doi.org/10.1016/j.actbio.2012.03.003.
Article PubMed PubMed Central CAS Google Scholar
Agha OA, Girgis GNS, El-Sokkary MMA, Soliman OAE. Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study. Int J Pharm X. 2023;6: 100201. https://doi.org/10.1016/j.ijpx.2023.100201.
Article PubMed PubMed Central CAS Google Scholar
Aziz D, Mohamed SA, Tayel S, Makhlouf A. Enhanced ocular anti-aspergillus activity of tolnaftate employing novel cosolvent-modified spanlastics: formulation, statistical optimization, kill kinetics, ex vivo trans-corneal permeation, in vivo histopathological and susceptibility study. Pharmaceutics. 2022;14:1746. https://doi.org/10.3390/pharmaceutics14081746.
Article PubMed PubMed Central CAS Google Scholar
Parakh DR, Patil MP, Sonawane SS and Jain CP. Development and validation of spectrophotometric method for estimation of Mebendazole in bulk and pharmaceutical formulation. World j pharma res. 2015;4:2223–35. https://api.semanticscholar.org/CorpusID:212610672.
Comments (0)