Stearyl amine tailored spanlastics embedded within tetronic nanogel for boosting the repurposed anticancer potential of mebendazole: formulation, in vitro profiling, cytotoxicity assessment, and in vivo permeation analysis

Xu M, Han X, Xiong H, Gao Y, Xu B, Zhu G, Li J. Cancer nanomedicine: emerging strategies and therapeutic potentials. Molecules. 2023;28:5145. https://doi.org/10.3390/molecules28135145.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE open med. 2021;9:20503121211034370. https://doi.org/10.1177/20503121211034366.

Article  PubMed  PubMed Central  Google Scholar 

Mondal J, Panigrahi A, Khuda-Bukhsh A. Conventional chemotherapy: problems and scope for combined therapies with certain herbal products and dietary supplements. Austin J Mol Cell Biol. 2014;1:1–10.

CAS  Google Scholar 

Olgen S, Kotra LP. Drug repurposing in the development of anticancer agents. Curr med chem. 2019;26:5410–27. https://doi.org/10.2174/0929867325666180713155702.

Article  PubMed  CAS  Google Scholar 

Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26. https://doi.org/10.1038/nrc3599.

Article  PubMed  CAS  Google Scholar 

Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C. Drug repurposing: progress, challenges and recommendations. Nat rev Drug discov. 2019;18:41–58. https://doi.org/10.1038/nrd.2018.168.

Article  PubMed  CAS  Google Scholar 

Shashaani H, Faramarzpour M, Hassanpour M, Namdar N, Alikhani A, Abdolahad M. Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells. Biosens Bioelectron. 2016;85:363–70. https://doi.org/10.1016/j.bios.2016.04.081.

Article  PubMed  CAS  Google Scholar 

Joe NS, Godet I, Milki N, Ain NU, Oza HH, Riggins GJ, Gilkes DM. Mebendazole prevents distant organ metastases in part by decreasing ITGβ4 expression and cancer stemness. Breast Cancer Res. 2022;24:98. https://doi.org/10.1186/s13058-022-01591-3.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sasaki J-I, Ramesh R, Chada S, Gomyo Y, Roth JA, Mukhopadhyay T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol Cancer Ther. 2002;1:1201–9.

PubMed  CAS  Google Scholar 

Bai R-Y, Staedtke V, Wanjiku T, Rudek MA, Joshi A, Gallia GL, Riggins GJ. Brain penetration and efficacy of different mebendazole polymorphs in a mouse brain tumor model. Clin Cancer Res. 2015;21:3462–70. https://doi.org/10.1158/1078-0432.CCR-14-2681.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Williamson T, Bai R-Y, Staedtke V, Huso D, Riggins GJ. Mebendazole and a non-steroidal antiinflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget. 2016;7:68571–84. https://doi.org/10.18632/oncotarget.11851.

Article  PubMed  PubMed Central  Google Scholar 

Zhang L, Dratver MB, Yazal T, Dong K, Nguyen A, Yu G, Dao A, Dratver MB, Duhachek-Muggy S, Bhat K. Mebendazole potentiates radiation therapy in triple-negative breast cancer. Int J Rad Oncol Biol Phys. 2019;103:195–207. https://doi.org/10.1016/j.ijrobp.2018.08.046.

Article  CAS  Google Scholar 

Domingues B, Lopes JM, Soares P, Pópulo H. Melanoma treatment in review. ImmunoTarget Ther. 2018;7:35–49. https://doi.org/10.2147/ITT.S134842.

Article  CAS  Google Scholar 

Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene. 2003;22:3138–51. https://doi.org/10.1038/sj.onc.1206454.

Article  PubMed  CAS  Google Scholar 

Kefayat A, Hosseini M, Ghahremani F, Jolfaie NA, Rafienia M. Biodegradable and biocompatible subcutaneous implants consisted of pH-sensitive mebendazole-loaded/folic acidtargeted chitosan nanoparticles for murine triple-negative breast cancer treatment. J Nanobiotechnology. 2022;20:169. https://doi.org/10.1186/s12951-022-01380-2.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Patel RD, Patel AS, Patel HJ, Sarvepalli S, Patel K. Development of rapidly soluble mebendazole nanosuspension for colorectal cancer. J Drug Deliv Sci Technol. 2024;91: 105276. https://doi.org/10.1016/j.jddst.2023.105276.

Article  CAS  Google Scholar 

Shrivastava S, Gidwani B, Kaur CD. Development of mebendazole loaded nanostructured lipid carriers for lymphatic targeting: Optimization, characterization, in-vitro and in-vivo evaluation. Particul Sci Technol. 2021;39:380–90. https://doi.org/10.1080/02726351.2020.1750515.

Article  CAS  Google Scholar 

Kutkut M, Shakya AK, Nsairat H, El-Tanani M. Formulation, development, and in vitro evaluation of a nanoliposomal delivery system for mebendazole and gefitinib. J Applied Pharma Sci. 2023;13:165–78. https://doi.org/10.7324/JAPS.2023.110512.

Article  CAS  Google Scholar 

Fahmy AM, El-Setouhy DA, Habib BA, Tayel SA. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: entrapment efficiency vs particle size. AAPS PharmSciTech. 2019;20:95. https://doi.org/10.1208/s12249-019-1306-2.

Article  PubMed  CAS  Google Scholar 

ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv. 2016;23:2115–23. https://doi.org/10.3109/10717544.2014.942811.

Article  PubMed  CAS  Google Scholar 

Gillet A, Compère P, Lecomte F, Hubert P, Ducat E, Evrard B, Piel G. Liposome surface charge influence on skin penetration behaviour. Int J Pharm. 2011;411:223–31. https://doi.org/10.1016/j.ijpharm.2011.03.049.

Article  PubMed  CAS  Google Scholar 

Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release. 2016;240:109–26. https://doi.org/10.1016/j.jconrel.2015.11.009.

Article  PubMed  CAS  Google Scholar 

Sahu P, Kashaw SK, Jain S, Sau S, Iyer AK. Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. J Control Release. 2017;253:122–36. https://doi.org/10.1016/j.jconrel.2017.03.023.

Article  PubMed  CAS  Google Scholar 

Sahu P, Kashaw SK, Sau S, Kushwah V, Jain S, Agrawal RK, Iyer AK. pH Responsive 5-fluorouracil loaded biocompatible nanogels for topical chemotherapy of aggressive melanoma. Colloids Surf B Biointerfaces. 2019;174:232–45. https://doi.org/10.1016/j.colsurfb.2018.11.018.

Article  PubMed  CAS  Google Scholar 

Cho E, Lee JS, Webb K. Formulation and characterization of poloxamine-based hydrogels as tissue sealants. Acta Biomater. 2012;8:2223–32. https://doi.org/10.1016/j.actbio.2012.03.003.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Agha OA, Girgis GNS, El-Sokkary MMA, Soliman OAE. Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study. Int J Pharm X. 2023;6: 100201. https://doi.org/10.1016/j.ijpx.2023.100201.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Aziz D, Mohamed SA, Tayel S, Makhlouf A. Enhanced ocular anti-aspergillus activity of tolnaftate employing novel cosolvent-modified spanlastics: formulation, statistical optimization, kill kinetics, ex vivo trans-corneal permeation, in vivo histopathological and susceptibility study. Pharmaceutics. 2022;14:1746. https://doi.org/10.3390/pharmaceutics14081746.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Parakh DR, Patil MP, Sonawane SS and Jain CP. Development and validation of spectrophotometric method for estimation of Mebendazole in bulk and pharmaceutical formulation. World j pharma res. 2015;4:2223–35. https://api.semanticscholar.org/CorpusID:212610672.

Comments (0)

No login
gif