1. Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014 Oct 16;41(4):518–28. https://doi.org/10.1016/j.immuni.2014.09.008
2. Pettersen EO, Ebbesen P, Gieling RG, Williams KJ, Dubois L, Lambin P, et al. Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: The METOXIA consortium. J Enzyme Inhib Med Chem. 2015; 30(5):689–721. https://doi.org/10.3109/14756366.2014.966704
3. Chi JT, Wang Z, Nuyten DSA, Rodriguez EH, Schaner ME, Salim A, et al. Gene expression programs in response to hypoxia: Cell type specificity and prognostic significance in human cancers. PLoS Med. 2006;3(3):e47. https://doi.org/10.1371/journal.pmed.0030047
4. Bai R, Li Y, Jian L, Yang Y, Zhao L, Wei M. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: Mechanisms and clinical treatment strategies. Mol Cancer. 2022;21(1):177. https://doi.org/10.1186/s12943-022-01645-2
5. Shweiki D, Neeman M, Itin A, Keshet E. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: Implications for tumor angiogenesis. Proc Natl Acad Sci USA. 1995;92(3):768–72. https://doi.org/10.1073/pnas.92.3.768
6. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32. https://doi.org/10.1038/nrc1187
7. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol [Internet]. 2014 Mar;15(3):178. Available from: /pmc/articles/PMC4240281/. [Cited 2024 Apr 30]. https://doi.org/10.1038/nrm3758
8. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90. https://doi.org/10.1016/j.cell.2009.11.007
9. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42. https://doi.org/10.1038/nrm1835
10. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28:15–33. https://doi.org/10.1007/s10555-008-9169-0
11. Semenza GL. Hypoxia-inducible factor 1: Master regulator of O2 homeostasis. Curr Opin Genet Dev. 1998 Oct 1;8(5):588–94. https://doi.org/10.1016/S0959-437X(98)80016-6
12. Chen Y, Gaber T. Hypoxia/HIF modulates immune responses. Biomedicines. 2021 Mar 1;9(3):260. https://doi.org/10.3390/biomedicines9030260
13. Tolonen JP, Heikkilä M, Malinen M, Lee HM, Palvimo JJ, Wei GH, et al. A long hypoxia-inducible factor 3 isoform 2 is a transcription activator that regulates erythropoietin [Internet]. Cell Mol Life Sci. 2020 Sep 1;77(18):3627–42. Available from: https://pubmed.ncbi.nlm.nih.gov/31768607/. [Cited 2024 May 1]. https://doi.org/10.1007/s00018-019-03387-9
14. Wenger RH. Cellular adaptation to hypoxia: O2‐sensing protein hydroxylases, hypoxia‐inducible transcription factors, and O2‐regulated gene expression . FASEB J. 2002 Aug;16(10):1151–62. https://doi.org/10.1096/fj.01-0944rev
15. Ratcliffe PJ. HIF-1 and HIF-2: Working alone or together in hypoxia? [Internet]. J Clin Invest. 2007 Apr 4;117(4):862. Available from: /pmc/articles/PMC1838952/. [Cited 2024 May 1]. https://doi.org/10.1172/JCI31750
16. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor. J Biol Chem. 1995 Jan 20;270(3):1230–7. https://doi.org/10.1074/jbc.270.3.1230
17. Jiang BH, Semenza GL, Bauer C, Marti HH. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol Cell Physiol. 1996;271(4 Pt. 1):C1172–80. https://doi.org/10.1152/ajpcell.1996.271.4.C1172
18. Kaelin WG, Ratcliffe PJ. Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell. 2008 May 23;30(4):393–402. https://doi.org/10.1016/j.molcel.2008.04.009
19. Kim LC, Simon MC. Hypoxia-inducible factors in cancer. Cancer Res. 2022 Jan 15;82(2):195–6. https://doi.org/10.1158/0008-5472.CAN-21-3780
20. Mikhail MI, Singh AK. Von Hippel-Lindau Syndrome. StatPearls [Internet]. Treasure Island, FL. 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459242/ [Cited 2024 Mar 16].
21. William G. Kaelin Jr, M. The VHL tumor suppressor gene: Insights into oxygen sensing and cancer. Trans Am Clin Climatol Assoc. 2017;128:298–307.
22. Xu R, Wang F, Yang H, Wang Z. Action sites and clinical application of hif-1α inhibitors. Molecules. 2022 May 26;27(11):3426. https://doi.org/10.3390/molecules27113426
23. Holmquist-Mengelbier L, Fredlund E, Lö Fstedt T, Noguera R, Navarro S, Nilsson HN, et al. Recruitment of HIF-1a and HIF-2a to common target genes is differentially regulated in neuroblastoma: HIF-2a promotes an aggressive phenotype. Cancer Cell. 2006 Nov;10(5):413–23. https://doi.org/10.1016/j.ccr.2006.08.026
24. Thoma C. HIF-2α—A new target in RCC. Nat Rev Urol [Internet]. 2016 Sep 27;13(11):627–7. Available from: https://www.nature.com/articles/nrurol.2016.184 [Cited 2024 May 1]. https://doi.org/10.1038/nrurol.2016.184
25. Lee S, Neumann M, Stearman R, Stauber R, Pause A, Pavlakis GN, et al. Transcription-dependent nuclear-cytoplasmic trafficking is required for the function of the von Hippel-Lindau tumor suppressor protein. Mol Cell Biol. 1999 Feb 1;19(2):1486–97. https://doi.org/10.1128/MCB.19.2.1486
26. Toledo RA, Jimenez C, Armaiz-Pena G, Arenillas C, Capdevila J, Dahia PLM. Hypoxia-inducible factor 2 alpha (HIF2α) inhibitors: Targeting genetically driven tumor hypoxia. Endocr Rev. 2023 Mar 4;44(2):312–22. https://doi.org/10.1210/endrev/bnac025
27. Chittiboina P, Lonser RR.. Von Hippel-Lindau disease [Internet]. Handb Clin Neurol. 2015;132:139–56. Available from: https://pubmed.ncbi.nlm.nih.gov/26564077/ [Cited 2024 Apr 30]. https://doi.org/10.1016/B978-0-444-62702-5.00010-X
28. Maher ER, Neumann HP, Richard S. von Hippel-Lindau disease: A clinical and scientific review. Eur J Hum Genet. 2011 Jun;19(6):617–23. https://doi.org/10.1038/ejhg.2010.175
29. Chou A, Toon C, Pickett J, Gill AJ. von Hippel-Lindau syndrome. Front Horm Res. 2013;41:30–49. https://doi.org/10.1159/000345668
30. Nordstrom-O’brien M, Van Der Luijt RB, Van Rooijen E, Van Den Ouweland AM, Majoor-Krakauer DF, Lolkema MP, et al. Genetic analysis of von Hippel‐Lindau disease. Hum Mutat. 2010 May;31(5):521–37. https://doi.org/10.1002/humu.21219.
31. van Leeuwaarde RS, Ahmad S, van Nesselrooij B, et al. Von Hippel-Lindau Syndrome. 2000 May 17 [updated 2025 May 1]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1463/
32. Gläsker S, Vergauwen E, Koch CA, Kutikov A, Vortmeyer AO. von Hippel-Lindau disease: Current challenges and future prospects. Onco Targets Ther. 2020 Jun 16;13:5669–90. https://doi.org/10.2147/OTT.S190753
33. Erbel PJA, Card PB, Karakuzu O, Bruick RK, Gardner KH. Structural basis for PAS domain heterodimerization in the basic helix-loop-helix-PAS transcription factor hypoxia-inducible factor. Proc Natl Acad Sci USA. 2003 Dec 23;100(26):15504–9. https://doi.org/10.1073/pnas.2533374100
34. Chen W, Hill H, Christie A, Kim M, Holloman E, Pavia-Jimenez A, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016 Nov 3;539(7627):112–7. https://doi.org/10.1038/nature19796
35. Courtney K, Ma Y, Diaz de Leon A, Christie A, Xie Z, Woolford L, et al. HIF-2 complex dissociation, target inhibition, and acquired resistance with PT2385, a first-in-class HIF-2 inhibitor, in patients with clear cell renal cell carcinoma. Clin Cancer Res. 2020 Feb 15;26(4):793–803. https://doi.org/10.1158/1078-0432.22474521.v1
36. Binderup MLM, Jensen AM, Budtz-Jørgensen E, Bisgaard ML. Survival and causes of death in patients with von Hippel-Lindau disease. J Med Genet. 2017 Jan;54(1):11–8. https://doi.org/10.1136/jmedgenet-2016-104058
37. Gordan JD, Lal P, Dondeti VR, Letrero R, Parekh KN, Oquendo CE, et al. HIF-α effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell. 2008 Dec 9;14(6):435–46. https://doi.org/10.1016/j.ccr.2008.10.016
38. Shen C, Beroukhim R, Schumacher SE, Zhou J, Chang M, Signoretti S, et al. Genetic and functional studies implicate HIF1a as a 14q kidney cancer suppressor gene. Cancer Discov. 2011 Aug;1(3):222–35. https://doi.org/10.1158/2159-8290.CD-11-0098
39. Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016 Sep 5;539(7627):112–7. https://doi.org/10.1038/nature19796
40. Wallace EM, Rizzi JP, Han G, Wehn PM, Cao Z, Du X, et al. A small-molecule antagonist of HIF2α is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 2016 Sep 15;76(18):5491–500. https://doi.org/10.1158/0008-5472.CAN-16-0473
41. Choueiri TK, McDermott DF, Merchan J, Bauer TM, Figlin R, Heath EI, et al. Belzutifan plus cabozantinib for patients with advanced clear cell renal cell carcinoma previously treated with immunotherapy: An open-label, single-arm, phase 2 study. Lancet Oncol. 2023 May 1;24(5):553–62. https://doi.org/10.1016/S1470-2045(23)00097-9
42. Courtney KD, Infante JR, Lam ET, Figlin RA, Rini BI, Brugarolas J, et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2a antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J Clin Oncol. 2018;36(9):867–74. https://doi.org/10.1200/JCO.2017.74.2627
43. Suárez C, Vieito M, Valdivia A, González M, Carles J. Selective HIF2A inhibitors in the management of clear cell renal cancer and von Hippel–Lindau disease-associated tumors. Med Sci. 2023;11(3):46. https://doi.org/10.3390/medsci11030046
44. U.S. Food & Drug Administration (US FDA). FDA approves belzutifan for cancers associated with von Hippel-Lindau disease [Internet]. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-belzutifan-cancers-associated-von-hippel-lindau-disease. [Cited 2024 May 1].
45. Deeks ED. Belzutifan: First approval. Drugs. 2021 Nov 1;81(16):1921–7. https://doi.org/10.1007/s40265-021-01606-x
46. Ren X, Diao X, Zhuang J, Wu D. Structural basis for the allosteric inhibition of hypoxia-inducible factor 2 by belzutifan. Mol Pharmacol [Internet]. 2022 Dec 1 102(6):240–7. Available from: https://molpharm.aspetjournals.org/content/102/6/240. [Cited 2024 May 1]. https://doi.org/10.1124/molpharm.122.000525
47. Choueiri TK, Bauer TM, Papadopoulos KP, Plimack ER, Merchan JR, McDermott DF, et al. Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with belzutifan: A phase 1 trial and biomarker analysis. Nat Med. 2021;27(5):802–5. https://doi.org/10.1038/s41591-021-01324-7
48. Jonasch E, Bauer TM, Papadopoulos KP, Plimack ER, Merchan JR, McDermott DF, et al. Phase 1 LITESPARK-001 (MK-6482-001) study of belzutifan in advanced solid tumors: Update of the clear cell renal cell carcinoma (ccRCC) cohort with more than 3 years of total follow-up [Internet]. J Clin Oncol. 2022 Jun 2;40(16 Suppl):4509–9. Available from: https://ascopubs.org/doi/10.1200/JCO.2022.40.16_suppl.4509. [Cited 2024 May 1]. https://doi.org/10.1200/JCO.2022.40.16_suppl.4509
49. ClinicalTrials.gov. A study of belzutifan (MK-6482) in participants with advanced clear cell renal cell carcinoma (MK-6482-018). ClinicalTrials.gov ID NCT05468697 [Internet]. 2022. Available from: https://clinicaltrials.gov/study/NCT05468697. [Cited 2024 Aug 21].
50. Jonasch E, Donskov F, Iliopoulos O, Rathmell WK, Narayan VK, Maughan BL, et al. Belzutifan for renal cell carcinoma in von Hippel–Lindau disease [Internet]. New Engl J Med. 2021 Nov 25;385(22):2036–46. Available from: https://www.nejm.org/doi/full/10.1056/NEJMoa2103425. [Cited 2024 May 1]. https://doi.org/10.1056/NEJMoa2103425
51. Jonasch E, Iliopoulos O, Rathmell WK, Narayan V, Maughan BL, Oudard S, et al. LITESPARK-004 (MK-6482-004) phase 2 study of belzutifan, an oral hypoxia-inducible factor 2α inhibitor (HIF-2α), for von Hippel-Lindau (VHL) disease: Update with more than two years of follow-up data. J Clin Oncol. 2022 Jun 1;40(16_suppl):4546–46. https://doi.org/10.1200/JCO.2022.40.16_suppl.4546
52. U.S. Food & Drug Administration (US FDA). FDA approves belzutifan for advanced renal cell carcinoma [Internet]. CitedAvailable from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-belzutifan-advanced-renal-cell-carcinoma. [Cited 2024 May 2].
53. Albiges L, Rini BI, Peltola K, De Velasco Oria GA, Burotto M, Suarez Rodriguez C, et al. LBA88 Belzutifan versus everolimus in participants (pts) with previously treated advanced clear cell renal cell carcinoma (ccRCC): Randomized open-label phase III LITESPARK-005 study. Ann Oncol. 2023 Oct;34:S1329–30. https://doi.org/10.1016/j.annonc.2023.10.090
54. European Society for Medical Oncology (ESMO). LITESPARK-013 phase 2- safety and efficacy of two doses of belzutifan in patients with advanced renal cell carcinoma (RCC) [Internet]. 2023. Available from: https://www.urotoday.com/conference-highlights/esmo-2023/esmo-2023-kidney-cancer/147500-esmo-2023-safety-and-efficacy-of-two-doses-of-belzutifan-in-patients-pts-with-advanced-rcc-results-of-the-randomized-phase-2-litespark-013-study.html. [Cited 2024 May 5].
55. Nguyen CB, Oh E, Bahar P, Vaishampayan UN, Else T, Alva AS. Novel approaches with HIF-2α targeted therapies in metastatic renal cell carcinoma [Internet]. Cancers. 2024 Jan 31;16(3):601. Available from: https://www.mdpi.com/2072-6694/16/3/601/htm. [Cited 2024 May 5]. https://doi.org/10.3390/cancers16030601
56. Choueiri TK, Merchan JR, Figlin R, McDermott DF, Arrowsmith E, Michaelson MD, et al. Belzutifan plus cabozantinib as first-line treatment for patients with advanced clear-cell renal cell carcinoma (LITESPARK-003): An open-label, single-arm, phase 2 study [Internet]. Lancet Oncol. 2025 Jan 1;26(1):64–73. Available from: https://www.thelancet.com/action/showFullText?pii=S1470204524006491. [Cited 2025 May 13]. https://doi.org/10.1016/S1470-2045(24)00649-1
57. Choueiri TK, Bauer TM, Merchan JR, McDermott DF, Figlin RA, Arrowsmith E, et al. Updated results from the phase 2 LITESPARK-003 study of belzutifan plus cabozantinib in patients with advanced clear cell renal cell carcinoma (ccRCC) [Internet]. J Clin Oncol. 2025 Feb 10;43(5 Suppl):549–9. Available from: https://ascopubs.org/doi/10.1200/JCO.2025.43.5_suppl.549. [Cited 2025 May 13]. https://doi.org/10.1200/JCO.2025.43.5_suppl.549
58. Albiges L, Suárez C, Powles T, Motzer RJ, Stadler WM, Miller WH, et al. KEYMAKER-U03 substudy 03B: Pembrolizumab (pembro) and targeted therapy combinations for advanced clear cell renal cell carcinoma (ccRCC) [Internet]. J Clin Oncol. 2025 Feb 10;43(5_Suppl):440. Available from: https://ascopubs.org/doi/10.1200/JCO.2025.43.5_suppl.440. [Cited 2025 May 14]. https://doi.org/10.1200/JCO.2025.43.5_suppl.440
59. Motzer RJ, Schmidinger M, Eto M, Suarez C, Figlin R, Liu Y, et al. LITESPARK-011: Belzutifan plus lenvatinib vs cabozantinib in advanced renal cell carcinoma after anti-PD-1/PD-L1 therapy [Internet]. Future Oncol. 2023 Jan 1;19(2):113–21. Available from: https://pubmed.ncbi.nlm.nih.gov/36752726/. [Cited 2024 May 2]. https://doi.org/10.2217/fon-2022-0802
60. McDermott DF, Peer A, Agarwal N, Atkins MB, Cornell J, Perini RF, et al. LITESPARK-024: A randomized phase 1/2 study of belzutifan with or without palbociclib in patients with advanced renal cell carcinoma [Internet]. J Clin Oncol. 2023 Feb 21;41(6_suppl):TPS747. Available from: https://ascopubs.org/doi/10.1200/JCO.2023.41.6_suppl.TPS747. [Cited 2024 May 5]. https://doi.org/10.1200/JCO.2023.41.6_suppl.TPS747
61. Choueiri TK, Bedke J, Karam JA, McKay RR, Motzer RJ, Pal SM, et al. Phase 3 LITESPARK-022: Pembrolizumab (pembro) plus hypoxia-inducible factor 2α (HIF-2α) inhibitor belzutifan as adjuvant treatment for clear cell renal cell carcinoma (ccRCC). J Clin Oncol. 2023 Feb 20;41(6_suppl):TPS748. https://doi.org/10.1200/JCO.2023.41.6_suppl.TPS748
62. Choueiri TK, Plimack ER, Powles T, Voss MH, Gurney H, Silverman RK, et al. Phase 3 study of first-line treatment with pembrolizumab + belzutifan + lenvatinib or pembrolizumab/quavonlimab + lenvatinib versus pembrolizumab + lenvatinib for advanced renal cell carcinoma (RCC). J Clin Oncol. 2022 Feb 20;40(6_suppl):TPS399. https://doi.org/10.1200/JCO.2022.40.6_suppl.TPS399
63. National Cancer Institute (NCI). A phase 1 study of AB521 monotherapy and combination therapies in renal cell carcinoma and other solid tumors [Internet]. Available from: https://www.cancer.gov/research/participate/clinical-trials-search/v?id=NCI-2023-02610&r=1. [Cited 2024 Sep 7].
64. Pharmaceutical-technology.com. AB-521 by Arcus Biosciences for renal cell carcinoma: Likelihood of approval [Internet]. Available from: https://www.pharmaceutical-technology.com/data-insights/ab-521-arcus-biosciences-renal-cell-carcinoma-likelihood-of-approval/ [Cited 2025 Mar 2].
65. Choueiri TK, Garmezy B, Paterson E, Ghasemi M, Cheng T, Foster PG, et al. ARC-20: A phase 1 dose-escalation and dose-expansion study to investigate the safety, tolerability, and pharmacology of HIF-2α inhibitor AB521 monotherapy in patients with clear cell renal cell carcinoma and other solid tumors [Internet]. J Clin Oncol. 2023 May 31;41(16_suppl):TPS4602. Available from: https://ascopubs.org/doi/10.1200/JCO.2023.41.16_suppl.TPS4602. [Cited 2024 Sep 7]. https://doi.org/10.1200/JCO.2023.41.16_suppl.TPS4602
66. Clinical Trials Arena.com. Exelixis and Arcus to analyse zanzalintinib and AB521 in trial [Internet]. Available from: https://www.clinicaltrialsarena.com/news/exelixis-arcus-solid-tumour-trial/. [Cited 2024 Sep 7].
67. Choueiri TK, Garmezy B, Paterson E, Ghasemi M, Cheng T, Foster PG, et al. ARC-20: A phase 1 dose-escalation and dose-expansion study to investigate the safety, tolerability, and pharmacology of HIF-2α inhibitor AB521 monotherapy in patients with clear cell renal cell carcinoma and other solid tumors [Internet]. J Clin Oncol. 2023 Jun 1;41(16_suppl):TPS4602. Available from: https://ascopubs.org/doi/10.1200/JCO.2023.41.16_suppl.TPS4602. [Cited 2025 Mar 3]. https://doi.org/10.1200/JCO.2023.41.16_suppl.TPS4602
68. Jonasch E, Hauke R, Falchook G, Logan T, Gordon M, Hall E, et al. A phase 1/2, open label dose-escalation and expansion trial of NKT2152, an orally administered HIF2α inhibitor, to investigate safety, PK, PD and clinical activity in patients with advanced ccRCC [Internet]. Oncologist. 2023 Aug 23;28(Suppl 1):S12. Available from: /pmc/articles/PMC10445566/?report=abstract. [Cited 2024 Sep 7]. https://doi.org/10.1093/oncolo/oyad216.019
69. ClinicalTrials.gov. A study of NKT2152, a HIF2α inhibitor, in patients with advanced clear cell renal cell carcinoma. ClinicalTrials.gov ID NCT05119335 [Internet]. 2025. Available from: https://clinicaltrials.gov/study/NCT05119335. [Cited 2024 Sep 7].
70. Dana-Farber Cancer Institute. A phase 2 trial to evaluate the safety and efficacy of NKT2152 in combination with palbociclib (doublet) and with palbociclib and sasanlimab (triplet) in subjects with advanced or metastatic clear cell renal cell carcinoma. Dana-Farber Cancer Institute ID NCT05935748 [Internet]. Available from: https://www.dana-farber.org/clinical-trials/23-434?utm_source=chatgpt.com. [Cited 2025 Mar 3].
71. Pal SK, Tannir NM, Grell P, Gao X, Kotecha RR, Picus J, et al. Preliminary safety, pharmacokinetics and clinical activity of DFF332, an oral HIF2α inhibitor, as monotherapy in a phase 1 dose escalation study in patients with advanced clear cell renal cell carcinoma [Internet]. J Clin Oncol. 2024 Jun 1;42(16_suppl):4513. Available from: https://ascopubs.org/doi/10.1200/JCO.2024.42.16_suppl.4513. [Cited 2025 Mar 2]. https://doi.org/10.1200/JCO.2024.42.16_suppl.4513
72. Lee JY, Dong SM, Park WS, Yoo NJ, Kim CS, Jang JJ, et al. Loss of heterozygosity and somatic mutations of the VHL tumor suppressor gene in sporadic cerebellar hemangioblastomas [Internet]. Cancer Res. 1998 Feb 1;58(3):504-8. Available from: https://aacrjournals.org/cancerres/article-abstract/58/3/504/504775. [Cited 2024 May 1].
73. Vortmeyer A, Gnarra J, Emmert-Buck M, Pathology DKH. von Hippel-Lindau gene deletion detected in the stromal cell component of a cerebellar hemangioblastoma associated with von Hippel-Lindau disease[Internet]. Elsevier 1997. Available from: https://www.sciencedirect.com/science/article/pii/S0046817797900757. [Cited 2024 May 1]. https://doi.org/10.1016/S0046-8177(97)90075-7
74. Böhling T, Hatva E, Kujala M, Claesson-Welsh L, Alitalo K, Haltia M. Expression of growth factors and growth factor receptors in capillary hemangioblastoma [Internet]. J Neuropathol Exp Neurol. 1996 May;55(5):522-7. Available from: https://academic.oup.com/jnen/article-abstract/55/5/522/2610578. [Cited 2024 May 1]. https://doi.org/10.1097/00005072-199605000-00004
75. Maher ER, Yates JRW, Harries R, Benjamin C, Harris R, Moore AT, et al. Clinical features and natural history of von Hippel-Lindau disease. QJM. 1990;77(2):1151–63.. [Cited 2024 May 1]. https://doi.org/10.1093/qjmed/77.2.1151
76. Dhawan A, Peereboom DM, Stevens GH. First clinical experience with belzutifan in von Hippel–Lindau disease associated CNS hemangioblastoma. CNS Oncol. 2022;11(3). [Cited 2024 May 2]. https://doi.org/10.2217/cns-2022-0008
77. Wilson R, Pathology MIH. A comparative study of 14 cases of familial and nonfamilial pheochromocytomas[Internet]. Elsevier1978. Available from: https://www.sciencedirect.com/science/article/pii/S0046817778801099. [Cited 2024 May 1].
78. Koch, CA, Mauro D, Walther MCM, Linehan WM, Vortmeyer AO, Jaffe R, et al. Pheochromocytoma in von Hippel-Lindau disease: Distinct histopathologic phenotype compared to pheochromocytoma in multiple endocrine neoplasia type 2 [Internet]. Endocr Pathol. 2002;13(1):17–27. Available from: https://link.springer.com/article/10.1385/EP:13:1:17. [Cited 2024 May 1]. https://doi.org/10.1385/EP:13:1:17
79. Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: Learning from genetic heterogeneity [Internet]. Nat Rev Cancer. 2014 Feb;14(2):108-19. Available from: https://www.nature.com/articles/nrc3648. [Cited 2024 May 2]. https://doi.org/10.1038/nrc3648
80. Zhuang Z, Yang C, Lorenzo F, Merino M, Fojo T, Kebebew E, et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. New Engl J Med. 2012 Sep 6;367(10):922–30. https://doi.org/10.1056/NEJMoa1205119
81. Pacak K, Jochmanova I, Prodanov T, Yang C, Merino MJ, Fojo T, et al. New syndrome of paraganglioma and somatostatinoma associated with polycythemia [Internet]. J Clin Oncol. 2013. May 1;31(13):1690–8 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807138/. [Cited 2024 May 2].
82. Percy MJ, Furlow PW, Lucas GS, Li X, Lappin TRJ, McMullin MF, et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. New Engl J Med. 2008 Jan 10;358(2):162–8. https://doi.org/10.1056/NEJMoa073123
83. Kamihara J, Hamilton KV, Pollard JA, Clinton CM, Madden JA, Lin J, et al. Belzutifan, a potent HIF2α inhibitor, in the Pacak–Zhuang syndrome [Internet]. New Engl J Med. 2021 Nov 25;385(22):2059–65. Available from: https://www.nejm.org/doi/full/10.1056/NEJMoa2110051. [Cited 2024 May 2]. https://doi.org/10.1056/NEJMoa2110051
84. Lubensky IA, Pack S, Ault D, Vortmeyer AO, Libutti SK, Choyke PL, et al. Multiple neuroendocrine tumors of the pancreas in von Hippel-Lindau disease patients: Histopathological and molecular genetic analysis [Internet]. Am J Pathol. 1998 Jul;153(1):223–31. Available from: https://www.sciencedirect.com/science/article/pii/S0002944010655630. [Cited 2024 May 1]. https://doi.org/10.1016/S0002-9440(10)65563-0
85. Neumann HPH, Dinkel E, Brambs H, Wimmer B, Friedburg H, Volk B, et al. Pancreatic lesions in the von Hippel-Lindau syndrome. Gastroenterology. 1991 Aug 1;101(2):465–71. https://doi.org/10.1016/0016-5085(91)90026-H
86. ClinicalTrials.gov. Belzutifan/MK-6482 for the treatment of advanced pheochromocytoma/paraganglioma (PPGL), pNET, VHL disease-associated tumors, advanced gastrointestinal stromal tumor (wt GIST), or solid tumors with HIF-2α related genetic alterations (MK-6482-015) [Internet]. Available from: https://clinicaltrials.gov/study/NCT04924075. [Cited 2024 May 2].
Comments (0)