Comparative chloroplast genome analyses of potentilleae: insights into genome characteristics, mutational hotspots, and adaptive evolution

Aogan, Khasbagan, Li QQ (2020a) The complete Chloroplast genome of Argentina phanerophlebia (Rosaceae: Potentilleae). Mitochondrial DNA B Resour 5(2):1763–1764. https://doi.org/10.1080/23802359.2020.1748549

Article  Google Scholar 

Aogan, Khasbagan, Li QQ (2020b) The complete Chloroplast genome of Farinopsis Salesoviana (Rosaceae: Potentilleae). Mitochondrial DNA B Resour 5(2):1363–1364. https://doi.org/10.1080/23802359.2020.1735275

Article  Google Scholar 

Ashida H, Mizohata E, Yokota A (2019) Learning RuBisCO’s birth and subsequent environmental adaptation. Biochem Soc Trans 47(1):179–185. https://doi.org/10.1042/BST20180449

Article  CAS  PubMed  Google Scholar 

Bai LJ, Ye YT, Chen Q, Tang HR (2017) The complete Chloroplast genome sequence of the white strawberry Fragaria pentaphylla. Conserv Genet Resour 9:659–661. https://doi.org/10.1007/s12686-017-0713-5

Article  Google Scholar 

Bai X, Wang G, RenY, Su Y, Han J (2023) Insights into taxonomy and phylogenetic relationships of eleven Aristolochia species based on Chloroplast genome. Front Plant Sci 14:1119041. https://doi.org/10.3389/fpls.2023.1119041

Article  PubMed  PubMed Central  Google Scholar 

Berry JO, Mure CM, Yerramsetty P (2016) Regulation of Rubisco gene expression in C4 plants. Curr Opin Plant Biol 31:23–28. https://doi.org/10.1016/j.pbi.2016.03.004

Article  CAS  PubMed  Google Scholar 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bricker TM (1990) The structure and function of CPa-1 and CPa-2 in photosystem II. Photosynth Res 24:1–13. https://doi.org/10.1007/BF00032639

Article  CAS  PubMed  Google Scholar 

Brouillet L (2014) Potentilleae sweet. In: Flora of North America Editorial Committee (eds) 1993+, Flora of North America North of Mexico. 19+ vols, vol 9. Oxford University Press, New York and Oxford, pp 119–311

Caroca R, Howell KA, Malinova I, Burgos A, Tiller N, Pellizzer T, Annunziata MG, Hasse C, Ruf S, Karcher D, Bock R (2021) Knockdown of the plastid-encoded acetyl-CoA carboxylase gene uncovers functions in metabolism and development. Plant Physiol 185(3):1091–1110. https://doi.org/10.1093/plphys/kiaa106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cauz-Santos LA, da Costa ZP, Sader MA, van den Berg C, Vieira MLC (2025) Chloroplast genomic insights into adaptive evolution and rapid radiation in the genus Passiflora (Passifloraceae). BMC Plant Biol 25(1):192. https://doi.org/10.1186/s12870-025-06210-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Liu Y, Sun J, Wang L, Zhou S (2019) The complete Chloroplast genome sequence of Rosa acicularis in Rosaceae. Mitochondrial DNA B Resour 4(1):1743–1744. https://doi.org/10.1080/23802359.2019.1610100

Article  Google Scholar 

Cheng H, Li J, Zhang H, Cai B, Gao Z, Qiao Y, Mi L (2017) The complete Chloroplast genome sequence of strawberry (Fragaria×ananassa Duch.) and comparison with related species of Rosaceae. PeerJ 5:e3919. https://doi.org/10.7717/peerj.3919

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cong L, Jiang H (2020) The complete Chloroplast genome of Potaninia mongolica (Rosaceae) from China. Mitochondrial DNA B Resour 5(1):574–575. https://doi.org/10.1080/23802359.2019.1710295

Article  PubMed  PubMed Central  Google Scholar 

Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17(1):134. https://doi.org/10.1186/s13059-016-1004-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: de Novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45(4):e18. https://doi.org/10.1093/nar/gkw955

Article  CAS  PubMed  Google Scholar 

Dobeš C, Paule J (2010) A comprehensive Chloroplast DNA-based phylogeny of the genus Potentilla (Rosaceae): implications for its geographic origin, phylogeography and generic circumscription. Mol Phylogenet Evol 56(1):156–175. https://doi.org/10.1016/j.ympev.2010.03.005

Article  PubMed  Google Scholar 

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

Google Scholar 

Drescher A, Ruf S, Calsa T Jr, Carrer H, Bock R (2000) The two largest Chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J 22(2):97–104. https://doi.org/10.1046/j.1365-313x.2000.00722.x

Article  CAS  PubMed  Google Scholar 

Eriksson T, Lundberg M, Töpel M, Östensson P, Smedmark JE (2014) Sibbaldia: a molecular phylogenetic study of a remarkably polyphyletic genus in Rosaceae. Plant Syst Evol 301:171–184. https://doi.org/10.1007/s00606-014-1063-3

Article  Google Scholar 

Feng T, Moore MJ, Yan MH, Sun YX, Zhang HJ, Meng AP, Wang HC (2017) Phylogenetic study of the tribe potentilleae (Rosaceae), with further insight into the disintegration of Sibbaldia. J Syst Evol 55(3):177–191. https://doi.org/10.1111/jse.12243

Article  Google Scholar 

Fleischmann TT, Scharff LB, Alkatib S, Hasdorf S, Schöttler MA, Bock R (2011) Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution. Plant Cell 23(9):3137–3155. https://doi.org/10.1105/tpc.111.088906

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao F, Chen C, Arab DA, Du Z, He Y, Ho SYW (2019) EasyCodeML: a visual tool for analysis of selection using CodeML. Ecol Evol 9(7):3891–3898. https://doi.org/10.1002/ece3.5015

Article  PubMed  PubMed Central  Google Scholar 

Gehrke B, Bräuchler C, Romoleroux K, Lundberg M, Heubl G, Eriksson T (2008) Molecular phylogenetics of Alchemilla, Aphanes and Lachemilla (Rosaceae) inferred from plastid and nuclear intron and spacer DNA sequences, with comments on generic classification. Mol Phylogenet Evol 47(3):1030–1044. https://doi.org/10.1016/j.ympev.2008.03.004

Article  CAS  PubMed  Google Scholar 

Gichira AW, Li Z, Saina JK, Long Z, Hu G, Gituru RW, Wang Q, Chen J (2017) The complete Chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae): structural comparative analysis, gene content and microsatellite detection. PeerJ 5:e2846. https://doi.org/10.7717/peerj.2846

Greiner S, Lehwark P, Bock R (2019) OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47:W59–W64. https://doi.org/10.1093/nar/gkz238

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heo KI, Kim Y, Maki M, Park J (2019) The complete Chloroplast genome of mock strawberry, Duchesnea indica (Andrews) Th. Wolf (Rosoideae). Mitochondrial DNA B Resour 4(1):560–562. https://doi.org/10.1080/23802359.2018.1553527

Article  Google Scholar 

Hu S, Sablok G, Wang B, Qu D, Barbaro E, Viola R, Li M, Varotto C (2015) Plastome organization and evolution of Chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genomics 16(1):306. https://doi.org/10.1186/s12864-015-1498-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang L, Wen J, Crabbe MJC, Chen C, Ren Z (2025) Complete Chloroplast genome characterization of three Plagiomnium species and the phylogeny of family Mniaceae. Genetica 153(1):6. https://doi.org/10.1007/s10709-024-00217-0

Article  CAS  Google Scholar 

Iwai M, Katayama M, Ikeuchi M (2006) Absence of the PsbH gene product destabilizes the photosystem II complex and prevents association of the photosystem II-X protein in the thermophilic Cyanobacterium Thermosynechococcus elongatus BP-1. Photosynth Res 87(3):313–322. https://doi.org/10.1007/s11120-005-9013-0

Article  CAS  PubMed  Google Scholar 

Jian HY, Zhang SD, Zhang T, Qiu XQ, Yan HJ, Li SB, Wang QG, Tang KX (2018) Characterization of the complete Chloroplast genome of a critically endangered decaploid Rose species, Rosa praelucens (Rosaceae). Conserv Genet Resour 10:851–854. https://doi.org/10.1007/s12686-017-0946-3

Article 

Comments (0)

No login
gif