Comparative chloroplast genomic analysis of (Roxb.) Benth 1844 and related species within Caesalpinioideae

Almutairi MM (2021) Analysis of chromosomes and nucleotides in rice to predict gene expression through codon usage pattern. Saudi J Biol Sci 28:4569–4574. https://doi.org/10.1016/j.sjbs.2021.04.059

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amar MH (2020) ycf1-ndhF genes, the most promising plastid genomic barcode, sheds light on phylogeny at low taxonomic levels in Prunus persica. J Genet Eng Biotechnol 18:42. https://doi.org/10.1186/s43141-020-00057-3

Article  PubMed  PubMed Central  Google Scholar 

Amiryousefi A, Hyvönen J, Poczai P (2018) IRscope: an online program to visualize the junction sites of Chloroplast genomes. Bioinformatics 34:3030–3031. https://doi.org/10.1093/bioinformatics/bty220

Article  CAS  PubMed  Google Scholar 

Awad M, Fahmy RM, Mosa KA, Helmy M, El-Feky FA (2017) Identification of effective DNA barcodes for Triticum plants through Chloroplast genome-wide analysis. Comput Biol Chem 7120–7131. https://doi.org/10.1016/j.compbiolchem.2017.09.003

Azani N, Babineau M, Bailey CD, Banks H, Barbosa AR, Pinto RB, Boatwright JS, Borges LM, Brown GK, Bruneau A (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: the legume phylogeny working group (LPWG). Taxon 66:44–77. https://doi.org/10.12705/661.3

Article  Google Scholar 

Barneby RC, Grimes JW (1997) Silk tree, Guanacaste, Monkey’s earring: a generic system for the synandrous Mimosaceae of the Americas. Part II. Pithecellobium, Cojoba and zygia. Edinb J Bot 54:117–123

Google Scholar 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537. https://doi.org/10.1371/journal.pcbi.1003537

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown GK, Aju J, Bayly MJ, Murphy DJ, McLay TGB (2022) Phylogeny and classification of the Australasian and Indomalayan mimosoid legumes Archidendron and Archidendropsis (Leguminosae, subfamily Caesalpinioideae, mimosoid clade). PhytoKeys 205299. https://doi.org/10.3897/phytokeys.205.79381

Bruneau A, Forest F, Herendeen PS, Klitgaard BB, Lewis GP (2001) Phylogenetic relationships in the Caesalpinioideae (Leguminosae) as inferred from Chloroplast TrnL intron sequences. Syst Bot 26:487–514. https://doi.org/10.1043/0363-6445-26.3.487

Article  Google Scholar 

Bruneau A, Mercure M, Lewis GP, Herendeen PS (2008) Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany 86:697–718. https://doi.org/10.1139/B08-058

Article  CAS  Google Scholar 

Bruneau A, de Queiroz LP, Ringelberg JJ, Borges LM, Costa Bortoluzzi RL da, Brown GK, Cardoso DBOS, Clark RP, Souza Conceição A de, Cota MMT (2024) Advances in Legume Systematics 14. Classification of Caesalpinioideae. Part 2: Higher-level classification. PhytoKeys 240:1. https://doi.org/10.3897/phytokeys.240.101716

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. https://doi.org/10.1093/bioinformatics/btp348

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cauz-Santos LA, Munhoz CF, Rodde N, Cauet S, Santos AA, Penha HA, Dornelas MC, Varani AM, Oliveira GCX, Berges H (2017) The Chloroplast genome of Passiflora edulis (Passifloraceae) assembled from long sequence reads: structural organization and phylogenomic studies in Malpighiales. Front Plant Sci 8334. https://doi.org/10.3389/fpls.2017.00334

Chan PP, Lin BY, Mak AJ, Lowe TM (2021) tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res 49:9077–9096. https://doi.org/10.1093/nar/gkab688

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Rico-Arce M L (1991) New species, combinations and synonyms for Zygia, Cojoba, marmaroxylon and Pithecellobium (Leguminosae: mimosoideae, Ingeae). Kew Bull 493–521. https://doi.org/10.2307/4110539

Dierckxsens N, Mardulyn P, Smits G (2016) NOVOPlasty: de Novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45:e18. https://doi.org/10.1093/nar/gkw955

Article  CAS  PubMed Central  Google Scholar 

Dong W, Liu J, Yu J, Wang L, Zhou S (2012) Highly variable Chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS ONE 7(4):e35071. https://doi.org/10.1371/journal.pone.0035071

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong W, Xu C, Li C, Sun J, Zuo Y, Shi S, Cheng T, Guo J, Zhou S (2015) ycf1, the most promising plastid DNA barcode of land plants. Sci Rep 5:1–5. https://doi.org/10.1038/srep08348

Article  CAS  Google Scholar 

Duan L, Li S-J, Su C, Sirichamorn Y, Han L-N, Ye W, Loc PK, Wen J, Compton JA, Schrire B (2021) Phylogenomic framework of the IRLC legumes (Leguminosae subfamily Papilionoideae) and intercontinental biogeography of tribe wisterieae. Mol Phylogenet Evol 163107235. https://doi.org/10.1016/j.ympev.2021.107235

Dugas DV, Hernandez D, Koenen EJM, Schwarz E, Straub S, Hughes CE, Jansen RK, Nageswara-Rao M, Staats M, Trujillo JT, Hajrah NH, Alharbi NS, Al-Malki AL, Sabir JSM, Bailey CD (2015) Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions and accelerated rate of evolution in ClpP. Sci Rep 5:16958. https://doi.org/10.1038/srep16958

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32:W273–W279. https://doi.org/10.1093/nar/gkh458

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greiner S, Lehwark P, Bock R (2019) OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47:W59–W64. https://doi.org/10.1093/nar/gkz238

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho PH (1999) An illustrated flora of Vietnam. Youth Publ 250

Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754

Hughes CE Silk Tree, Guanacaste, Monkey’s Earring. A Generic System for the Synandrous Mimosaceae of the Americas. Part 1. Abarema, Albizia and Allies., Rupert C, Barneby (1997) & James W. Grimes. Memoirs of the New York Botanical Garden 74, Part 1. New York: New York Bota. Edinburgh J Bot. 741–292

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772. https://doi.org/10.1093/MOLBEV/MST010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim M, Kim T-J (2023) Genetic species identification using ycf1 b, rbcL, and trnH-psbA in the genus Pinus as a complementary method for anatomical wood species identification. Forests 14:1095. https://doi.org/10.3390/f14061095

Article  Google Scholar 

Koenen EJM, Kidner C, de Souza ÉR, Simon MF, Iganci JR, Nicholls JA, Brown GK, Queiroz LP, De, Luckow M, Lewis GP (2020) Hybrid capture of 964 nuclear genes resolves evolutionary relationships in the mimosoid legumes and reveals the polytomous origins of a large Pantropical radiation. Am J Bot 107:1710–1735. https://doi.org/10.1002/ajb2.1568

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurtz S (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642. https://doi.org/10.1093/nar/29.22.4633

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luckow M, Miller JT, Murphy DJ, Livshultz T (2003) A phylogenetic analysis of the mimosoideae (Leguminosae) based on Chloroplast DNA sequence data. Adv Legum Syst Part 10197–10220

Megala J, Geetha A (2012) Antiulcerogenic activity of hydroalcoholic fruit extract of Pithecellobium dulce in different experimental ulcer models in rats. J Ethnopharmacol 142:415–421. https://doi.org/10.1016/j.jep.2012.05.011

Article  CAS  PubMed  Google Scholar 

Murugesan S, Lakshmanan DK, Arumugam V, Alexander RA (2019) Nutritional and therapeutic benefits of medicinal plant Pithecellobium dulce (Fabaceae): A review. J Appl Pharm Sci 9:130–139. https://doi.org/10.7324/JAPS.2019.90718

Article  CAS  Google Scholar 

Nguyen HD, Vu MT, Do HDK (2023) The complete Chloroplast genome of Syzygium polyanthum (Wight) Walp. (Myrtales: Myrtaceae). J Asia-Pacific Biodivers 16:267–271. https://doi.org/10.1016/j.japb.2023.03.002

Article  Google Scholar 

Nguyen TL, Nguyen HD, Vu NH, Vu MT (2024) Plastome sequencing of Gymnanthemum amygdalinum and phylogenetic analysis of 17 newly assembled Asteraceae plastomes. J Asia-Pacific Biodivers 17:820–826. https://doi.org/10.1016/j.japb.2024.08.007

Article  Google Scholar 

Nigam SK, Mitra CR (1970) PITHECOLOBIUM DULCE–V. Planta Med 18:44–50. https://doi.org/10.1055/s-0028-1099747

Article  CAS  PubMed  Google Scholar 

Nigam SK, Gopal M, Uddin R, Yoshikawa K, Kawamoto M, Arihara S (1997) Pithedulosides A-G, Oleanane glycosides from Pithecellobium dulce. Phytochemistry 44(7):1329–1334. https://doi.org/10.101

Comments (0)

No login
gif