Diabetes mellitus narrows frequency band range of low-frequency components in heart rate variability

Rukadikar C, Rukadikar A, Kishore S. A review on autonomic functional assessment in diabetic patients. Cureus. 2023;15(2): e34598. https://doi.org/10.7759/cureus.34598.

Article  PubMed  PubMed Central  Google Scholar 

Yokoyama H, Araki SI, Kawai K, Yamazaki K, Tomonaga O, Shirabe SI, et al. Declining trends of diabetic nephropathy, retinopathy and neuropathy with improving diabetes care indicators in Japanese patients with type 2 and type 1 diabetes (JDDM 46). BMJ Open Diabetes Res Care. 2018;6(1): e000521. https://doi.org/10.1136/bmjdrc-2018-000521.

Article  PubMed  PubMed Central  Google Scholar 

Jin HY, Baek HS, Park TS. Morphologic changes in autonomic nerves in diabetic autonomic neuropathy. Diabetes Metab J. 2015;39(6):461–7. https://doi.org/10.4093/dmj.2015.39.6.461.

Article  PubMed  PubMed Central  Google Scholar 

Motataianu A, Maier S, Bajko Z, Voidazan S, Balasa R, Stoian A. Cardiac autonomic neuropathy in type 1 and type 2 diabetes patients. BMC Neurol. 2018;18(1):126. https://doi.org/10.1186/s12883-018-1125-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vinik AI, Erbas T. Recognizing and treating diabetic autonomic neuropathy. Cleve Clin J Med. 2001;68(11):928–30. https://doi.org/10.3949/ccjm.68.11.928.

Article  CAS  PubMed  Google Scholar 

Wang X, Ma L, Jiang M, Zhu H, Ni C, Yang X, et al. Analysis of gastric electrical rhythm in patients with type 2 diabetes mellitus. Endocrine. 2024;86(2):612–9. https://doi.org/10.1007/s12020-024-03908-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jang HN, Park YS, Moon JH, Choi SH, Jang HC, Oh TJ. Improvement of heart rate variability after metabolic bariatric surgery in Korean subjects with obesity. J Diabetes Investig. 2024;15(12):1773–80. https://doi.org/10.1111/jdi.14332.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kudat H, Akkaya V, Sozen AB, Salman S, Demirel S, Ozcan M, et al. Heart rate variability in diabetes patients. J Int Med Res. 2006;34(3):291–6. https://doi.org/10.1177/147323000603400308.

Article  CAS  PubMed  Google Scholar 

Yamamoto M, Yamasaki Y, Kodama M, Matsuhisa M, Kishimoto M, Ozaki H, et al. Impaired diurnal cardiac autonomic function in subjects with type 2 diabetes. Diabetes Care. 1999;22(12):2072–7. https://doi.org/10.2337/diacare.22.12.2072.

Article  CAS  PubMed  Google Scholar 

Bellavere F, Balzani I, De Masi G, Carraro M, Carenza P, Cobelli C, et al. Power spectral analysis of heart-rate variations improves assessment of diabetic cardiac autonomic neuropathy. Diabetes. 1992;41(5):633–40. https://doi.org/10.2337/diab.41.5.633.

Article  CAS  PubMed  Google Scholar 

Sornmo L, Bailon R, Laguna P. Spectral analysis of heart rate variability in time-varying conditions and in the presence of confounding factors. IEEE Rev Biomed Eng. 2024;17:322–41. https://doi.org/10.1109/RBME.2022.3220636.

Article  PubMed  Google Scholar 

Satoh N. Spectral decomposition of heart rate variability using generalized harmonic analysis. Biomed Signal Process Control. 2021;70: 103050. https://doi.org/10.1016/j.bspc.2021.103050.

Article  Google Scholar 

Goto Y, Sugiura Y, Yanagimoto M, Yasuda Y, Suzuki H, Hasegawa K. Relation with preoperative fructosamine and autonomic nerve function and blood pressure during anesthesia in diabetics: a retrospective study. Tohoku J Exp Med. 1999;187(1):49–58. https://doi.org/10.1620/tjem.187.49.

Article  CAS  PubMed  Google Scholar 

Goto Y, Yasuda Y, Yanagimoto M. Application on radar-chart for many-sided diagnose as a strain of autonomic nerve function from the heart rate variability. Autonomic Nervous Syst. 1994;31:660–7.

Google Scholar 

Yanagihara N, Seki M, Nakano M, Hachisuga T, Goto Y. Inverse correlation between the standard deviation of R-R intervals in supine position and the simplified menopausal index in women with climacteric symptoms. Menopause. 2014;21(6):669–72. https://doi.org/10.1097/GME.0000000000000094.

Article  PubMed  Google Scholar 

Norimoto T, Yanagihara N, Satoh N. Effect of microcurrent electrical neuromuscular stimulation on the autonomic nervous balance. Japanese J Electrophys Agents. 2022;29:90–4.

Google Scholar 

Yanagihara N, Takada M, Ariyoshi H, Satoh N, Horishita T, Shao H, et al. Effect of pine nodule extract, Sho-ko-sen, on mental stress-induced changes in the autonomic nervous balance in young students. Curr Topics Pharmacol. 2023;27:47–53.

Google Scholar 

Tondokoro T, Nakata A, Otsuka Y, Yanagihara N, Anan A, Kodama H, et al. Giving social support at work may reduce inflammation on employees themselves: a participatory workplace intervention study among Japanese hospital nurses. Ind Health. 2022;60(3):266–75. https://doi.org/10.2486/indhealth.2021-0096.

Article  PubMed  Google Scholar 

Tondokoro T, Nakata A, Otsuka Y, Yanagihara N, Anan A, Kodama H, et al. Effects of participatory workplace improvement program on stress-related biomarkers and self-reported stress among university hospital nurses: a preliminary study. Ind Health. 2021;59(2):128–41. https://doi.org/10.2486/indhealth.2020-0176.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–79. https://doi.org/10.2337/diacare.26.5.1553.

Article  PubMed  Google Scholar 

Sasaki K, Maruyama R. Consciously controlled breathing decreases the high-frequency component of heart rate variability by inhibiting cardiac parasympathetic nerve activity. Tohoku J Exp Med. 2014;233(3):155–63. https://doi.org/10.1620/tjem.233.155.

Article  PubMed  Google Scholar 

Laborde S, Allen MS, Borges U, Dosseville F, Hosang TJ, Iskra M, et al. Effects of voluntary slow breathing on heart rate and heart rate variability: a systematic review and a meta-analysis. Neurosci Biobehav Rev. 2022;138: 104711. https://doi.org/10.1016/j.neubiorev.2022.104711.

Article  CAS  PubMed  Google Scholar 

Stewart J, Stewart P, Walker T, Gullapudi L, Eldehni MT, Selby NM, et al. Application of the Lomb-Scargle periodogram to investigateheart rate variability during haemodialysis. J Healthc Eng. 2020;2020:8862074. https://doi.org/10.1155/2020/8862074.

Article  PubMed  PubMed Central  Google Scholar 

Souza Neto EP, Custaud MA, Cejka JC, Abry P, Frutoso J, Gharib C, et al. Assessment of cardiovascular autonomic control by the empirical mode decomposition. Methods Inf Med. 2004;43(1):60–5.

Article  CAS  PubMed  Google Scholar 

Pernice R, Sparacino L, Bari V, Gelpi F, Cairo B, Mijatovic G, et al. Spectral decomposition of cerebrovascular and cardiovascular interactions in patients prone to postural syncope and healthy controls. Auton Neurosci. 2022;242: 103021. https://doi.org/10.1016/j.autneu.2022.103021.

Article  PubMed  Google Scholar 

Geweke J. Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc. 1982;77(378):304–13.

Article  Google Scholar 

Kuo J, Kuo CD. Decomposition of heart rate variability spectrum into a power-law function and a residual spectrum. Front Cardiovasc Med. 2016;3:16. https://doi.org/10.3389/fcvm.2016.00016.

Article  PubMed  PubMed Central  Google Scholar 

Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European society of cardiology and the north american society of pacing and electrophysiology. Circulation. 1996;93(5):1043–65.

Comments (0)

No login
gif