Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabet Res Clin Pract. 2022. https://doi.org/10.1016/j.diabres.2021.109119.
Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. The Lancet. 2014;383(9911):69–82. https://doi.org/10.1016/S0140-6736(13)60591-7.
Craig ME, Jefferies C, Dabelea D, Balde N, Seth A, Donaghue KC. Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes. 2014. https://doi.org/10.1111/pedi.12186.
Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, Greenbaum CJ, Herold KC, Krischer JP, Lernmark A, Ratner RE, Rewers MJ, Schatz DA, Skyler JS, Sosenko JM, Ziegler AG. Staging presymptomatic type 1 diabetes: a scientific statement of jdrf, the endocrine society, and the American diabetes association. Diabetes Care. 2015. https://doi.org/10.2337/dc15-1419.
Article PubMed PubMed Central Google Scholar
Van Belle TL, Coppieters KT, Von Herrath MG. Type 1 diabetes: Etiology, immunology, and therapeutic strategies. Em Physiol Rev. 2011. https://doi.org/10.1152/physrev.00003.2010.
American Diabetes Association. Standards of medical care in diabetes—2022 abridged for primary care providers. Clin Diabetes. 2022. https://doi.org/10.2337/cd22-as01.
Article PubMed Central Google Scholar
Brands AMA, Biessels GJ, De Haan EHF, Kappelle LJ, Kessels RPC. The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care. 2005. https://doi.org/10.2337/diacare.28.3.726.
Tonoli C. Diabetes associated cognitive decline, is there a role for exercise? J Diabet Metabol. 2013. https://doi.org/10.4172/2155-6156.S10-006.
Tonoli C, Heyman E, Roelands B, Pattyn N, Buyse L, Piacentini MF, Berthoin S, Meeusen R. Type 1 diabetes-associated cognitive decline: A meta-analysis and update of the current literature 1型糖尿病相关的认知能力下降: 一项对最新文献的meta分析. J Diabetes. 2014;6(6):499–513. https://doi.org/10.1111/1753-0407.12193.
Blasetti A, Chiuri RM, Tocco AM, Giulio CD, Mattei PA, Ballone E, Chiarelli F, Verrotti A. The effect of recurrent severe hypoglycemia on cognitive performance in children with type 1 diabetes: a meta-analysis. J Child Neurol. 2011. https://doi.org/10.1177/0883073811406730.
Auer RN. Hypoglycemic brain damage. Metab Brain Dis. 2004;19(3/4):169–75. https://doi.org/10.1023/B:MEBR.0000043967.78763.5b.
Malone JI, Hanna S, Saporta S, Mervis RF, Park CR, Chong L, Diamond DM. Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatr Diabetes. 2008;9(6):531–9. https://doi.org/10.1111/j.1399-5448.2008.00431.x.
Sima AAF, Kamiya H, Guo Li Z. Insulin, C-peptide, hyperglycemia, and central nervous system complications in diabetes. Eur J Pharmacol. 2004;490(1–3):187–97. https://doi.org/10.1016/j.ejphar.2004.02.056.
Article CAS PubMed Google Scholar
Furman BL. Streptozotocin-induced diabetic models in mice and rats. Current Protocols. 2021. https://doi.org/10.1002/cpz1.78.
Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi S, Farhangi A, Allah Verdi A, Mofidian SMA, Lame Rad B. Induction of diabetes by Streptozotocin in rats. Indian J Clin Biochem. 2007. https://doi.org/10.1007/BF02913315.
Article PubMed PubMed Central Google Scholar
Konrad RJ, Mikolaenko I, Tolar JF, Liu K, Kudlow JE. The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic β-cell O-GlcNAc-selective N-acetyl-β-d-glucosaminidase. Biochem J. 2001. https://doi.org/10.1042/bj3560031.
Article PubMed PubMed Central Google Scholar
Hägg E. Influence of insulin treatment on glomerular changes in rats with long-term alloxan diabetes. Acta Pathol Microbiol Scand Sect A Pathol. 1974. https://doi.org/10.1111/j.1699-0463.1974.tb03847.x.
Hakim ZS, Patel BK, Goyal RK. Effects of chronic ramipril treatment in streptozotocin-induced diabetic rats. Indian J Physiol Pharmacol. 1997;41(4):353–60.
Jamali R, Ludvigsson J, Mohseni S. Continuous monitoring of the subcutaneous glucose level in freely moving normal and diabetic rats and in humans with type 1 diabetes. Diabetes Technol Ther. 2002;4(3):305–12.
Marissal-Arvy N, Campas M-N, Semont A, Ducroix-Crepy C, Beauvieux M-C, Brossaud J, Corcuff J-B, Helbling J-C, Vancassel S, Bouzier-Sore A-K, Touyarot K, Ferreira G, Barat P, Moisan M-P. Insulin treatment partially prevents cognitive and hippocampal alterations as well as glucocorticoid dysregulation in early-onset insulin-deficient diabetic rats. Psychoneuroendocrinology. 2018;93:72–81. https://doi.org/10.1016/j.psyneuen.2018.04.016.
Article CAS PubMed Google Scholar
Rajashree R, Kholkute SD, Goudar SS. Effects of duration of diabetes on behavioural and cognitive parameters in streptozotocin-induced juvenile diabetic rats. Malays J Med Sci MJMS. 2011;18(4):26–31.
Sacai H, Sasaki-Hamada S, Sugiyama A, Saitoh A, Mori K, Yamada M, Oka J-I. The impairment in spatial learning and hippocampal LTD induced through the PKA pathway in juvenile-onset diabetes rats are rescued by modulating NMDA receptor function. Neurosci Res. 2014;81–82:55–63. https://doi.org/10.1016/j.neures.2014.02.002.
Article CAS PubMed Google Scholar
Mathieu C, Gillard P, Benhalima K. Insulin analogues in type 1 diabetes mellitus: getting better all the time. Nature Rev Endocrinol. 2017. https://doi.org/10.1038/nrendo.2017.39.
Luippold G, Bedenik J, Voigt A, Grempler R. Short-and longterm glycemic control of streptozotocin-induced diabetic rats using different insulin preparations. PLoS ONE. 2016;11(6):e0156346.
PubMed PubMed Central Google Scholar
Rasch R. Prevention of diabetic glomerulopathy in streptozotocin diabetic rats by insulin treatment. Diabetologia. 1979;16(5):319–24.
Biessels G-J, Kamal A, Urban IJA, Spruijt BM, Erkelens DW, Gispen WH. Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res. 1998;800(1):125–35. https://doi.org/10.1016/S0006-8993(98)00510-1.
Article CAS PubMed Google Scholar
Greene DA, De Jesus PV, Winegrad AI. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Investig. 1975. https://doi.org/10.1172/JCI108052.
Article PubMed PubMed Central Google Scholar
Howarth FC, Jacobson M, Shafiullah M, Adeghate E. Long-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats. Exp Physiol. 2005. https://doi.org/10.1113/expphysiol.2005.031252.
Caires De Souza AL, Acurcio FDA, Guerra Júnior AA, Rezende RC, Godman B, Diniz LM. Insulin glargine in a Brazilian state: Should the government disinvest? An assessment based on a systematic review. Appl Health Econ Health Policy. 2014. https://doi.org/10.1007/s40258-013-0073-6.
Mega, T. P. (2016). Diabetes melito: ainda a questão da insulina? OPAS/OMS – Representação Brasil, 1(19).
Galani R, Weiss I, Cassel JC, Kelche C. Spatial memory, habituation, and reactions to spatial and nonspatial changes in rats with selective lesions of the hippocampus, the entorhinal cortex or the subiculum. Behav Brain Res. 1998. https://doi.org/10.1016/S0166-4328(97)00197-6.
Gresack JE, Frick KM. Effects of continuous and intermittent estrogen treatments on memory in aging female mice. Brain Res. 2006. https://doi.org/10.1016/j.brainres.2006.07.067.
da Silva E, Natali AJ, da Silva MF, de Jesus Gomes G, da Cunha DNQ, Toledo MM, Drummond FR, Ramos RMS, dos Santos EC, Novaes RD, de Oliveira LL, dos Maldonado IRSC. Swimming training attenuates the morphological reorganization of the myocardium and local inflammation in the left ventricle of growing rats with untreated experimental diabetes. Pathol Res Pract. 2016. https://doi.org/10.1016/j.prp.2016.02.005.
Comments (0)