Yakupu A, Aimaier R, Yuan B, Chen B, Cheng J, Zhao Y, Peng Y, Dong J, Lu S. The burden of skin and subcutaneous diseases: findings from the global burden of disease study 2019. Front Public Health. 2023;11:1145513. https://doi.org/10.3389/fpubh.2023.1145513.
Article PubMed PubMed Central Google Scholar
Du-Harpur X, Watt FM, Luscombe NM, Lynch MD. What is AI? Applications of artificial intelligence to dermatology. Br J Dermatol. 2020;183(3):423–30. https://doi.org/10.1111/bjd.18880.
Article CAS PubMed PubMed Central Google Scholar
Li CP, Dai W, Xiao YP, Qi M, Zhang LX, Gao L, Zhang FL, Lai YK, Liu C, Lu J, Chen F. Two-stage deep neural network for diagnosing fungal keratitis via in vivo confocal microscopy images. Sci Rep. 2024;14(1):18432. https://doi.org/10.1038/s41598-024-68768-y.
Article CAS PubMed PubMed Central Google Scholar
Sakagianni A, Koufopoulou C, Feretzakis G, Kalles D, Verykios VS, Myrianthefs P, Fildisis G. Using machine learning to predict antimicrobial Resistance-A literature review. Antibiot (Basel). 2023;12(3):452. https://doi.org/10.3390/antibiotics12030452.
David L, Brata AM, Mogosan C, Pop C, Czako Z, Muresan L, Ismaiel A, Dumitrascu DI, Leucuta DC, Stanculete MF, Iaru I, Popa SL. Artificial intelligence and antibiotic discovery. Antibiot (Basel). 2021;10(11):1376. https://doi.org/10.3390/antibiotics10111376.
Talimi H, Retmi K, Fissoune R, Lemrani M. Artificial intelligence in cutaneous leishmaniasis diagnosis: current developments and future perspectives. Diagnostics (Basel). 2024;14(9):963. https://doi.org/10.3390/diagnostics14090963.
Yotsu RR, Ding Z, Hamm J, Blanton RE. Deep learning for AI-based diagnosis of skin-related neglected tropical diseases: A pilot study. PLoS Negl Trop Dis. 2023;17(8):e0011230. https://doi.org/10.1371/journal.pntd.0011230.
Article PubMed PubMed Central Google Scholar
Ankolekar A, Eppings L, Bottari F, Pinho IF, Howard K, Baker R, Nan Y, Xing X, Walsh SL, Vos W, Yang G. Using artificial intelligence and predictive modelling to enable learning healthcare systems (LHS) for pandemic preparedness. Comput Struct Biotechnol J. 2024;24:412–9. https://doi.org/10.1016/j.csbj.2024.05.014.
Article PubMed PubMed Central Google Scholar
Tan RKJ, Perera D, Arasaratnam S, Kularathne Y. Adapting an artificial intelligence sexually transmitted diseases symptom checker tool for Mpox detection: the hehealth experience. Sex Health. 2024;21:SH23197. https://doi.org/10.1071/SH23197.
Xue Y, Zhou J, Xu BN, Li Y, Bao W, Cheng XL, He Y, Xu CP, Ren J, Zheng YR, Jia CY. Global burden of bacterial skin diseases: A systematic analysis combined with sociodemographic index, 1990–2019. Front Med (Lausanne). 2022;9:861115. https://doi.org/10.3389/fmed.2022.861115.
Han R, Fan X, Ren S, Niu X. Artificial intelligence in assisting pathogenic microorganism diagnosis and treatment: a review of infectious skin diseases. Front Microbiol. 2024;15:1467113. https://doi.org/10.3389/fmicb.2024.1467113.
Article PubMed PubMed Central Google Scholar
World Health Organization. Scabies. 31 May 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/scabies
World Health Organization. WHO’s first global meeting on skin NTDs calls for greater efforts to address their burden. 31 March 2023. Available from: https://www.who.int/news/item/31-03-2023-who-first-global-meeting-on-skin-ntds-calls-for-greater-efforts-to-address-their-burden
Escalé-Besa A, Vidal-Alaball J, Miró Catalina Q, Gracia VHG, Marin-Gomez FX, Fuster-Casanovas A. The use of artificial intelligence for skin disease diagnosis in primary care settings: A systematic review. Healthc (Basel). 2024;12(12):1192. https://doi.org/10.3390/healthcare12121192.
Bulińska B, Mazur-Milecka M, Sławińska M, Rumiński J, Nowicki RJ. Artificial intelligence in the diagnosis of Onychomycosis-Literature review. J Fungi (Basel). 2024;10(8):534. https://doi.org/10.3390/jof10080534.
Hutchinson D, Kunasekaran M, Quigley A, Moa A, MacIntyre CR. Could it be Monkeypox?? Use of an AI-based epidemic early warning system to monitor rash and fever illness. Public Health. 2023;220:142–7. https://doi.org/10.1016/j.puhe.2023.05.010.
Article CAS PubMed Google Scholar
Koo T, Kim MH, Jue M-S. Automated detection of superficial fungal infections from microscopic images through a regional convolutional neural network. PLoS ONE. 2021;16(8):e0256290. https://doi.org/10.1371/journal.pone.0256290.
Article CAS PubMed PubMed Central Google Scholar
Gao W, Li M, Wu R, et al. The design and application of an automated microscope developed based on deep learning for fungal detection in dermatology. Mycoses. 2021;64(3):245–51. https://doi.org/10.1111/myc.13209.
Article CAS PubMed Google Scholar
Schielein MC, Christl J, Sitaru S, Pilz AC, Kaczmarczyk R, Biedermann T, et al. Outlier detection in dermatology: performance of different convolutional neural networks for binary classification of inflammatory skin diseases. J Eur Acad Dermatol Venereol. 2023;37(5):1071–9. https://doi.org/10.1111/jdv.18853.
Kim YJ, Han SS, Yang HJ, Chang SE. Correction: prospective, comparative evaluation of a deep neural network and dermoscopy in the diagnosis of onychomycosis. PLoS ONE. 2020;15(12):e0244899. https://doi.org/10.1371/journal.pone.0244899.
Article PubMed PubMed Central Google Scholar
Xu J, Luo Y, Wang J, Tu W, Yi X, Xu X, et al. Artificial intelligence-aided rapid and accurate identification of clinical fungal infections by single-cell Raman spectroscopy. Front Microbiol. 2023;14:1125676. https://doi.org/10.3389/fmicb.2023.1125676.
Article PubMed PubMed Central Google Scholar
Leal JFdC, Barroso DH, Trindade NS, de Miranda VL, Gurgel-Gonçalves R. Automated identification of cutaneous leishmaniasis lesions using Deep-Learning-Based artificial intelligence. Biomedicines. 2023;12:12. https://doi.org/10.3390/biomedicines12010012.
Article PubMed PubMed Central Google Scholar
Abdelmula AM, Mirzaei O, Güler E, Süer K. Assessment of deep learning models for cutaneous leishmania parasite diagnosis using microscopic images. Diagnostics. 2024;14:12. https://doi.org/10.3390/diagnostics14010012.
Noureldeen AM, Masoud KS, Almakhzoom OA. Deep learning model for cutaneous leishmaniasis detection and classification using YOLOv5. Afr J Adv Pure Appl Sci (AJAPAS). 2023;2(2):270–280. Available from: https://aaasjournals.com/index.php/ajapas/article/view/382
Arce-Lopera CA, Diaz-Cely J, Quintero L. Presumptive diagnosis of cutaneous leishmaniasis. Front Health Inf. 2021;10:75. https://doi.org/10.30699/fhi.v10i1.278.
Steyve N, Steve P, Ghislain M, Ndjakomo S, Pierre E. Optimized Real-Time diagnosis of neglected tropical diseases by automatic recognition of skin lesions. Inf Med Unlocked. 2022;33:101078. https://doi.org/10.1016/j.imu.2022.101078.
Zare M, Akbarialiabad H, Parsaei H, Asgari Q, Alinejad A, Bahreini MS, Hosseini SH, Ghofrani-Jahromi M, Shahriarirad R, Amirmoezzi Y, et al. A machine Learning-Based system for detecting leishmaniasis in microscopic images. BMC Infect Dis. 2022;22:48. https://doi.org/10.1186/s12879-022-07029-7.
Article PubMed PubMed Central Google Scholar
Barbieri RR, Xu Y, Setian L, Souza-Santos PT, Trivedi A, Cristofono J, et al. Reimagining leprosy elimination with AI analysis of a combination of skin lesion images with demographic and clinical data. Lancet Reg Health Am. 2022;9:100192. https://doi.org/10.1016/j.lana.2022.100192.
Article PubMed PubMed Central Google Scholar
Bhargava A, López-Espina C, Schmalz L, Khan S, Watson GL, Urdiales D, et al. FDA-Authorized AI/ML tool for Sepsis prediction: development and validation. NEJM AI. 2024;1:AIoa2400867. https://doi.org/10.1056/AIoa2400867.
Li Y, Song S, Zhu L, Zhang X, Mou Y, Lei M, Wang W, Tao Z. Machine learning-based prediction model for patients with recurrent Staphylococcus aureus bacteremia. BMC Med Inf Decis Mak. 2025;25(1):99. https://doi.org/10.1186/s12911-025-02878-z.
Khan H, Jan Z, Ullah I, Alwabli A, Alharbi F, Habib S, Islam M, Shin BJ, Lee MY, Koo J. A deep dive into AI integration and advanced nanobiosensor technologies for enhanced bacterial infection monitoring. Nanatechnol Reviews. 2024;13(1):20240056. https://doi.org/10.1515/ntrev-2024-0056.
Comments (0)