The Role of Artificial Intelligence in Diagnosis and Management of Cutaneous Infections

Yakupu A, Aimaier R, Yuan B, Chen B, Cheng J, Zhao Y, Peng Y, Dong J, Lu S. The burden of skin and subcutaneous diseases: findings from the global burden of disease study 2019. Front Public Health. 2023;11:1145513. https://doi.org/10.3389/fpubh.2023.1145513.

Article  PubMed  PubMed Central  Google Scholar 

Du-Harpur X, Watt FM, Luscombe NM, Lynch MD. What is AI? Applications of artificial intelligence to dermatology. Br J Dermatol. 2020;183(3):423–30. https://doi.org/10.1111/bjd.18880.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li CP, Dai W, Xiao YP, Qi M, Zhang LX, Gao L, Zhang FL, Lai YK, Liu C, Lu J, Chen F. Two-stage deep neural network for diagnosing fungal keratitis via in vivo confocal microscopy images. Sci Rep. 2024;14(1):18432. https://doi.org/10.1038/s41598-024-68768-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakagianni A, Koufopoulou C, Feretzakis G, Kalles D, Verykios VS, Myrianthefs P, Fildisis G. Using machine learning to predict antimicrobial Resistance-A literature review. Antibiot (Basel). 2023;12(3):452. https://doi.org/10.3390/antibiotics12030452.

Article  CAS  Google Scholar 

David L, Brata AM, Mogosan C, Pop C, Czako Z, Muresan L, Ismaiel A, Dumitrascu DI, Leucuta DC, Stanculete MF, Iaru I, Popa SL. Artificial intelligence and antibiotic discovery. Antibiot (Basel). 2021;10(11):1376. https://doi.org/10.3390/antibiotics10111376.

Article  CAS  Google Scholar 

Talimi H, Retmi K, Fissoune R, Lemrani M. Artificial intelligence in cutaneous leishmaniasis diagnosis: current developments and future perspectives. Diagnostics (Basel). 2024;14(9):963. https://doi.org/10.3390/diagnostics14090963.

Article  PubMed  Google Scholar 

Yotsu RR, Ding Z, Hamm J, Blanton RE. Deep learning for AI-based diagnosis of skin-related neglected tropical diseases: A pilot study. PLoS Negl Trop Dis. 2023;17(8):e0011230. https://doi.org/10.1371/journal.pntd.0011230.

Article  PubMed  PubMed Central  Google Scholar 

Ankolekar A, Eppings L, Bottari F, Pinho IF, Howard K, Baker R, Nan Y, Xing X, Walsh SL, Vos W, Yang G. Using artificial intelligence and predictive modelling to enable learning healthcare systems (LHS) for pandemic preparedness. Comput Struct Biotechnol J. 2024;24:412–9. https://doi.org/10.1016/j.csbj.2024.05.014.

Article  PubMed  PubMed Central  Google Scholar 

Tan RKJ, Perera D, Arasaratnam S, Kularathne Y. Adapting an artificial intelligence sexually transmitted diseases symptom checker tool for Mpox detection: the hehealth experience. Sex Health. 2024;21:SH23197. https://doi.org/10.1071/SH23197.

Article  PubMed  Google Scholar 

Xue Y, Zhou J, Xu BN, Li Y, Bao W, Cheng XL, He Y, Xu CP, Ren J, Zheng YR, Jia CY. Global burden of bacterial skin diseases: A systematic analysis combined with sociodemographic index, 1990–2019. Front Med (Lausanne). 2022;9:861115. https://doi.org/10.3389/fmed.2022.861115.

Article  PubMed  Google Scholar 

Han R, Fan X, Ren S, Niu X. Artificial intelligence in assisting pathogenic microorganism diagnosis and treatment: a review of infectious skin diseases. Front Microbiol. 2024;15:1467113. https://doi.org/10.3389/fmicb.2024.1467113.

Article  PubMed  PubMed Central  Google Scholar 

World Health Organization. Scabies. 31 May 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/scabies

World Health Organization. WHO’s first global meeting on skin NTDs calls for greater efforts to address their burden. 31 March 2023. Available from: https://www.who.int/news/item/31-03-2023-who-first-global-meeting-on-skin-ntds-calls-for-greater-efforts-to-address-their-burden

Escalé-Besa A, Vidal-Alaball J, Miró Catalina Q, Gracia VHG, Marin-Gomez FX, Fuster-Casanovas A. The use of artificial intelligence for skin disease diagnosis in primary care settings: A systematic review. Healthc (Basel). 2024;12(12):1192. https://doi.org/10.3390/healthcare12121192.

Article  Google Scholar 

Bulińska B, Mazur-Milecka M, Sławińska M, Rumiński J, Nowicki RJ. Artificial intelligence in the diagnosis of Onychomycosis-Literature review. J Fungi (Basel). 2024;10(8):534. https://doi.org/10.3390/jof10080534.

Article  PubMed  Google Scholar 

Hutchinson D, Kunasekaran M, Quigley A, Moa A, MacIntyre CR. Could it be Monkeypox?? Use of an AI-based epidemic early warning system to monitor rash and fever illness. Public Health. 2023;220:142–7. https://doi.org/10.1016/j.puhe.2023.05.010.

Article  CAS  PubMed  Google Scholar 

Koo T, Kim MH, Jue M-S. Automated detection of superficial fungal infections from microscopic images through a regional convolutional neural network. PLoS ONE. 2021;16(8):e0256290. https://doi.org/10.1371/journal.pone.0256290.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao W, Li M, Wu R, et al. The design and application of an automated microscope developed based on deep learning for fungal detection in dermatology. Mycoses. 2021;64(3):245–51. https://doi.org/10.1111/myc.13209.

Article  CAS  PubMed  Google Scholar 

Schielein MC, Christl J, Sitaru S, Pilz AC, Kaczmarczyk R, Biedermann T, et al. Outlier detection in dermatology: performance of different convolutional neural networks for binary classification of inflammatory skin diseases. J Eur Acad Dermatol Venereol. 2023;37(5):1071–9. https://doi.org/10.1111/jdv.18853.

Article  PubMed  Google Scholar 

Kim YJ, Han SS, Yang HJ, Chang SE. Correction: prospective, comparative evaluation of a deep neural network and dermoscopy in the diagnosis of onychomycosis. PLoS ONE. 2020;15(12):e0244899. https://doi.org/10.1371/journal.pone.0244899.

Article  PubMed  PubMed Central  Google Scholar 

Xu J, Luo Y, Wang J, Tu W, Yi X, Xu X, et al. Artificial intelligence-aided rapid and accurate identification of clinical fungal infections by single-cell Raman spectroscopy. Front Microbiol. 2023;14:1125676. https://doi.org/10.3389/fmicb.2023.1125676.

Article  PubMed  PubMed Central  Google Scholar 

Leal JFdC, Barroso DH, Trindade NS, de Miranda VL, Gurgel-Gonçalves R. Automated identification of cutaneous leishmaniasis lesions using Deep-Learning-Based artificial intelligence. Biomedicines. 2023;12:12. https://doi.org/10.3390/biomedicines12010012.

Article  PubMed  PubMed Central  Google Scholar 

Abdelmula AM, Mirzaei O, Güler E, Süer K. Assessment of deep learning models for cutaneous leishmania parasite diagnosis using microscopic images. Diagnostics. 2024;14:12. https://doi.org/10.3390/diagnostics14010012.

Article  Google Scholar 

Noureldeen AM, Masoud KS, Almakhzoom OA. Deep learning model for cutaneous leishmaniasis detection and classification using YOLOv5. Afr J Adv Pure Appl Sci (AJAPAS). 2023;2(2):270–280. Available from: https://aaasjournals.com/index.php/ajapas/article/view/382

Arce-Lopera CA, Diaz-Cely J, Quintero L. Presumptive diagnosis of cutaneous leishmaniasis. Front Health Inf. 2021;10:75. https://doi.org/10.30699/fhi.v10i1.278.

Article  Google Scholar 

Steyve N, Steve P, Ghislain M, Ndjakomo S, Pierre E. Optimized Real-Time diagnosis of neglected tropical diseases by automatic recognition of skin lesions. Inf Med Unlocked. 2022;33:101078. https://doi.org/10.1016/j.imu.2022.101078.

Article  Google Scholar 

Zare M, Akbarialiabad H, Parsaei H, Asgari Q, Alinejad A, Bahreini MS, Hosseini SH, Ghofrani-Jahromi M, Shahriarirad R, Amirmoezzi Y, et al. A machine Learning-Based system for detecting leishmaniasis in microscopic images. BMC Infect Dis. 2022;22:48. https://doi.org/10.1186/s12879-022-07029-7.

Article  PubMed  PubMed Central  Google Scholar 

Barbieri RR, Xu Y, Setian L, Souza-Santos PT, Trivedi A, Cristofono J, et al. Reimagining leprosy elimination with AI analysis of a combination of skin lesion images with demographic and clinical data. Lancet Reg Health Am. 2022;9:100192. https://doi.org/10.1016/j.lana.2022.100192.

Article  PubMed  PubMed Central  Google Scholar 

Bhargava A, López-Espina C, Schmalz L, Khan S, Watson GL, Urdiales D, et al. FDA-Authorized AI/ML tool for Sepsis prediction: development and validation. NEJM AI. 2024;1:AIoa2400867. https://doi.org/10.1056/AIoa2400867.

Article  Google Scholar 

Li Y, Song S, Zhu L, Zhang X, Mou Y, Lei M, Wang W, Tao Z. Machine learning-based prediction model for patients with recurrent Staphylococcus aureus bacteremia. BMC Med Inf Decis Mak. 2025;25(1):99. https://doi.org/10.1186/s12911-025-02878-z.

Article  Google Scholar 

Khan H, Jan Z, Ullah I, Alwabli A, Alharbi F, Habib S, Islam M, Shin BJ, Lee MY, Koo J. A deep dive into AI integration and advanced nanobiosensor technologies for enhanced bacterial infection monitoring. Nanatechnol Reviews. 2024;13(1):20240056. https://doi.org/10.1515/ntrev-2024-0056.

Article  CAS  Google Scholar 

Comments (0)

No login
gif