Breast cancer patients present pro-tumor biomarkers related to purinergic signaling and oxidative stress

Forcados GE, James DB, Sallau AB, Muhammad A, Mabeta P (2017) Oxidative stress and carcinogenesis: potential of phytochemicals in breast cancer therapy. Nutr Cancer 69(3):365–374. https://doi.org/10.1080/01635581.2017.1267777

Article  PubMed  CAS  Google Scholar 

GLOBOCANO (2020). The Global Cancer Observatory. Published in Cancer Today. https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf. Accessed on: June 26, 2022.

Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, Shi W, Jiang J, Yao PP, Zhu HP (2017) Risk factors and preventions of breast cancer. Int J Biol Sci 13(11):1387–1397. https://doi.org/10.7150/ijbs.21635

Article  PubMed  PubMed Central  CAS  Google Scholar 

Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure-function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430. https://doi.org/10.1007/s11302-006-9003-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gheler FV, Cappellari AR, Renck D et al (2021) Reduction of AMP hydrolysis in blood plasma of elderly breast cancer patients after different treatments. Mol Cell Biochem 476:3719–3727. https://doi.org/10.1007/s11010-021-04199-x

Article  PubMed  CAS  Google Scholar 

de Araújo JB, Kerkhoff VV, de Oliveira Maciel SFV, de Resende E, Silva DT (2021) Targeting the purinergic pathway in breast cancer and its therapeutic applications. Purinergic Signal. 17(2):179–200. https://doi.org/10.1007/s11302-020-09760-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Buisseret L, Pommey S, Allard B, Garaud S, Bergeron M, Cousineau I, Ameye L, Bareche Y, Paesmans M, Crown JPA, Di Leo A, Loi S, Piccart-Gebhart M, Willard-Gallo K, Sotiriou C, Stagg J (2018) Clinical significance of CD73 in triple-negative breast cancer: multiplex analysis of a phase III clinical trial. Ann Oncol 29(4):1056–1062. https://doi.org/10.1093/annonc/mdx730

Article  PubMed  CAS  Google Scholar 

Gachet C (2008) P2 receptors, platelet function and pharmacological implications. Thromb Haemost 99(3):466–472. https://doi.org/10.1160/TH07-11-0673

Article  PubMed  CAS  Google Scholar 

Boison D (2012). Adenosine augmentation therapy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, (ed.). Jasper’s Basic Mechanisms of the Epilepsies. 4th edition, USA, 2012.

Antonioli L, Blandizzi C, Pacher P, Haskó G (2019) The purinergic system as a pharmacological target for the treatment of immune-mediated inflammatory diseases. Pharmacol Rev 71(3):345–382. https://doi.org/10.1124/pr.117.014878

Article  PubMed  PubMed Central  CAS  Google Scholar 

Consentino G, Plantamura I, Cataldo A, et al. (2019) Interaction between microRNA and oxidative stress in the context of breast cancer pathogenesis. International Journal of Molecular Sciences, v. 20, n.0. https://doi.org/10.3390/ijms20205143.

Bona PN et al (2022) Tannic acid attenuates peripheral and cerebral alterations in a preclinical rat model of glioblastoma by modulating oxidative stress and purinergic signaling. Neurochem Res 47:541–1552. https://doi.org/10.1007/s11064-022-03547-7

Article  CAS  Google Scholar 

He X, Zhang Y, Xu Y, Xie L, Yu Z, Zheng J (2021) Function of P2X7 receptor in hematopoiesis and leukemogenesis. Exp Hematol 104:40–47. https://doi.org/10.1016/j.exphem.2021.10.001

Article  PubMed  CAS  Google Scholar 

Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12(12):931–947. https://doi.org/10.1038/nrd4002

Article  PubMed  CAS  Google Scholar 

Sahu A, Varma M, Kachhawa K (2015) A prognostic study of MDA, SOD and catalase in breast cancer patients. International Journal of Science and Research (IJSR) 4:157–159

Google Scholar 

de Sá Junior PL, Câmara DAD, Porcacchia AS, Fonseca PMM, Jorge SD, Araldi RP, Ferreira AK (2017) The roles of ROS in cancer heterogeneity and therapy. Oxid Med Cell Longev 2017:2467940. https://doi.org/10.1155/2017/2467940

Article  PubMed  PubMed Central  CAS  Google Scholar 

Herrera AC, Victorino VJ, Campos FC, Verenitach BD, Lemos LT, Aranome AM, Oliveira SR, Cecchini AL, Simão AN, Abdelhay E, Panis C, Cecchini R (2014) Impact of tumor removal on the systemic oxidative profile of breast cancer patients reveals lipid peroxidation at diagnosis as a putative marker of disease recurrence. Clin Breast Cancer 14(6):451–459. https://doi.org/10.1016/j.clbc.2014.05.002

Article  PubMed  CAS  Google Scholar 

Zhang K, Ping L, Du T, Wang Y, Sun Y, Liang G, Wang X, Xie X, Wei W, Xiao X, Tang J (2021) A novel systematic oxidative stress score predicts the prognosis of patients with operable breast cancer. Oxid Med Cell Longev 2021:9441896. https://doi.org/10.1155/2021/9441896

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:218–254. https://doi.org/10.1006/abio.1976.9999

Article  CAS  Google Scholar 

Jentzsch AM, Bachmann H, Fürst P, Biesalski HK (1996) Improved analysis of malondialdehyde in human body fluids. Free Radical Biol Med 20(2):251–256

Article  CAS  Google Scholar 

Suzuki K, Ota H, Sasagawa S, Sakatani T, Fujikura T (1983) Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem 132(2):345–352. https://doi.org/10.1016/0003-2697(83)90019-2

Article  PubMed  CAS  Google Scholar 

Ali SF, Lebel CP, Bondy SC (1992) Formation of reactive oxygen species as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13(3):637–648

PubMed  CAS  Google Scholar 

Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77. https://doi.org/10.1016/0003-9861(59)90090-6

Article  PubMed  CAS  Google Scholar 

Galley HF, Howdle PD, Walker BE, Webster NR (1997) The effects of intravenous antioxidants in patients with septic shock. Free Radic Biol Med 23(5):768–774

Article  PubMed  CAS  Google Scholar 

Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

Article  PubMed  CAS  Google Scholar 

Leal D (2005) HIV infection is associated with increased NTPDase activity that correlates with CD39-positive lymphocytes. Universidade Federal do Rio Grande do Sul, Thesis

Book  Google Scholar 

Lunkes GI, Lunkes D, Stefanello F et al (2003) Enzymes that hydrolyze adenine nucleotides in diabetes and associated pathologies. Thromb Res 109:189–194. https://doi.org/10.1016/S0049-3848(03)00178-6

Article  PubMed  CAS  Google Scholar 

Giusti G, Galanti B (1984) Adenosine deaminase: colorimetric method. HU Bergmeyer, Enzyme Methods Anal 4:315–323

CAS  Google Scholar 

Gong Z, Xin R, Li L, Lv L, Wu X (2022) Platelet-lymphocyte ratio associated with clinicopathological features and prognostic value of breast cancer: a meta-analysis. Int J Biol Markers 37(4):339–348. https://doi.org/10.1177/03936155221118098

Article  PubMed  CAS  Google Scholar 

Gong Z, Xin R, Li L, Lv L, Wu X (2022) Platelet-to-lymphocyte ratio associated with the clinicopathological features and prognostic value of breast cancer: A meta-analysis. Int J Biol Markers 37(4):339–348. https://doi.org/10.1177/03936155221118098

Article  PubMed  CAS  Google Scholar 

Strasenburg W, Jóźwicki J, Durślewicz J, Kuffel B, Kulczyk MP, Kowalewski A, Grzanka D, Drewa T, Adamowicz J (2022) Tumor cell-induced platelet aggregation as an emerging therapeutic target for cancer therapy. Front Oncol 12:909767. https://doi.org/10.3389/fonc.2022.909767

Article  PubMed  PubMed Central  CAS  Google Scholar 

Singla T, Singla G, Ranga S, Singla S, Arora R (2020) Role of platelet aggregation in patients with metastatic breast cancer. Indian J Pathol Microbiol. 63(4):564–569.

Comments (0)

No login
gif