-mediated transformation and gene editing of kohlrabi ( var. )

Bhalla PL, Singh MB (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 3:181–189. https://doi.org/10.1038/nprot.2007.527

Article  CAS  PubMed  Google Scholar 

Brewer SE, Chambers AH (2022) CRISPR/Cas9-mediated genome editing of phytoene desaturase in Carica papaya L. J Hortic Sci Biotechnol 97:580–592. https://doi.org/10.1080/14620316.2022.2038699

Article  CAS  Google Scholar 

Cao Chu U, Kumar S, Sigmund A, Johnson K, Li Y, Vongdeuane P, Jones TJ (2020) Genotype-independent transformation and genome editing of Brassica napus using a novel explant material. Front Plant Sci 11:579524. https://doi.org/10.3389/fpls.2020.579524

Article  PubMed  PubMed Central  Google Scholar 

Čermák T, Curtin SJ, Gil-Humanes J, Čegan R, Kono TJ, Konečná E, Belanto JJ, Starker CG, Mathre JW, Greenstein RL, Voytas DF (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217. https://doi.org/10.1105/tpc.16.00922

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ċosiċ T, Motyka V, Raspor M, Savić J, Cingel A, Vinterhalter B, Vinterhalter D, Trávníčková A, Dobrev PI, Bohanec B, Ninković S (2015) In vitro shoot organogenesis and comparative analysis of endogenous phytohormones in kohlrabi (iBrassica oleracea/i var. gongylodes): effects of genotype, explant type and applied cytokinins. Plant Cell Tiss Org Cult 12:741–760. https://doi.org/10.1007/s11240-015-0742-2

Ćosić T, Raspor M, Motyka V, Cingel A, Ninković S (2023) In vitro growth and regeneration of Brassica oleracea var. gongylodes: a decade of research. Horticulturae 9:674. https://doi.org/10.3390/horticulturae9060674

Article  Google Scholar 

Cosic T, Savic J, Raspor M, Cingel A, Ghalawnji N, Vinterhalter B, Ninkovic S (2020) Effects of different types of sugars and plant growth regulators on kohlrabi seedling growth and development in vitro. Archives of Biological Sciences 72:349–357. https://doi.org/10.2298/ABS200622029C

Article  Google Scholar 

Ćosić T, Vinterhalter B, Vinterhalter D, Mitić N, Cingel A, Savić J, Bohanec B, Ninković S (2013) In vitro plant regeneration from immature zygotic embryos and repetitive somatic embryogenesis in kohlrabi (Brassica oleracea var. gongylodes). In Vitro Cell Dev Biol - Plant 49:294–303. https://doi.org/10.1007/s11627-013-9517-9

Article  Google Scholar 

Dai C, Li Y, Li L, Du Z, Lin S, Tian X, Li S, Yang B, Yao W, Wang J, Guo L, Lu S (2020) An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Mol. Breed. 40:96. https://doi.org/10.1007/s11032-020-01174-0

Article  CAS  Google Scholar 

De Block M, De Brouwer D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol 91:694–701. https://doi.org/10.1104/pp.91.2.694

Article  PubMed  PubMed Central  Google Scholar 

De Block M, De Sonville A, Debrouwer D (1995) The selection mechanism of phosphinothricin is influenced by the metabolic status of the tissue. Planta 197:619–626. https://doi.org/10.1007/BF00191569

Article  Google Scholar 

Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110. https://doi.org/10.1007/s11103-014-0263-0

Article  CAS  PubMed  Google Scholar 

Glendening TM, Sjolund R (1988) In vitro propagation of kohlrabi from leaf explants. HortScience 23:772. https://doi.org/10.21273/HORTSCI.23.4.772

Article  Google Scholar 

Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPR. Genome Biol 17:148. https://doi.org/10.1186/s13059-016-1012-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hundleby P, Chhetry M (2020) Brassica oleracea transformation. In K.-Y. To (ed) Genetic transformation in crops. IntechOpen. https://doi.org/10.5772/intechopen.93570

Jabeen N (2020) Agricultural, economic and societal importance of Brassicaceae plants. The plant family Brassicaceae: biology and physiological responses to environmental stresses 45–128:45. https://doi.org/10.1007/978-981-15-6345-4_2

Article  Google Scholar 

Khusnutdinov E, Sukhareva A, Panfilova M, Mikhaylova E (2021) Anthocyanin biosynthesis genes as model genes for genome editing in plants. Int J Mol Sci 22:8752. https://doi.org/10.3390/ijms22168752

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar P, Srivastava DK (2015) High-frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. Italica), an important vegetable crop. Physiol Mol Biol Plants 21:279–285. https://doi.org/10.1007/s12298-015-0282-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumaratilake AR, Preston C (2005) Low temperature reduces glufosinate activity and translocation in wild radish (Raphanus raphanistrum). Weed Sci 53:10–16. https://doi.org/10.1614/WS-03-140R

Article  CAS  Google Scholar 

Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258. https://doi.org/10.1186/s13059-015-0826-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Wei M, Liu Y, Fang Z, Zhang Y, Yang L, Han F (2023) Functional characterization of BoGL5 by an efficient CRISPR/Cas9 genome editing system in broccoli. Sci Hortic 319:112136. https://doi.org/10.1016/j.scienta.2023.112136

Article  CAS  Google Scholar 

Ma C, Zhu C, Zheng M (2019) CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic Res 6:20. https://doi.org/10.1038/s41438-018-0107-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Msikita W, Skirvin RM, Chen SY (1997) Micropropagation of Brassica oleracea (cole crops). In: Bajaj YPS (ed) High-tech and micropropagation V 39:30–47. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-662-07774-0_3

Neequaye M, Stavnstrup S, Lawrenson T, Hundleby P, Troncoso-Rey P, Saha S, Harwood W, Traka MH, Mithen R, Østergaard L (2021) CRISPR-Cas9-mediated editing of myb28 genes impair glucoraphanin accumulation of Brassica oleracea in the field. CRISPR J 4:416–426. https://doi.org/10.1089/crispr.2021.0007

Article  CAS  PubMed  Google Scholar 

Nemie-Feyissa D, Olafsdottir SM, Heidari B, Lillo C (2014) Nitrogen depletion and small R3-MYB transcription factors affecting anthocyanin accumulation in Arabidopsis leaves. Phytochemistry 98:34–40. https://doi.org/10.1016/j.phytochem.2013.12.006

Article  CAS  PubMed  Google Scholar 

Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ (2017) Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci 8:296797. https://doi.org/10.3389/fpls.2017.01780

Article  Google Scholar 

Puddephat IJ, Riggs TJ, Fenning TM (1996) Transformation of Brassica oleracea L.: a critical review. Mol Breed 2:185–210. https://doi.org/10.1007/BF00564197

Article  Google Scholar 

Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DA (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol Breed 7:229–242. https://doi.org/10.1023/A:1011338322000

Article  CAS  Google Scholar 

Rafat A, Aziz MA, Rashid AA, Abdullah SNA, Kamaladini H, Sirchi MHT, Javadi MB (2010) Optimization of Agrobacterium tumefaciens-mediated transformation and shoot regeneration after co-cultivation of cabbage (Brassica oleracea subsp. Capitata) cv. KY Cross with AtHSP101 gene. Sci Hortic 124:1–8. https://doi.org/10.1016/j.scienta.2009.11.015

Article  CAS  Google Scholar 

Reddy KN, Zablotowicz RM, Bellaloui N, Ding W (2011) Glufosinate effects on nitrogen nutrition, growth, yield, and seed composition in glufosinate-resistant and glufosinate-sensitive soybean. Int J of Agron 1:109280. https://doi.org/10.1155/2011/109280

Article  CAS  Google Scholar 

Rizwan HM, Irshad M, He B, Liu S, Lu X, Sun Y, Qiu D (2020) Role of reduced nitrogen for induction of embryogenic callus induction and regeneration of plantlets in Abelmoschus esculentus L. S Afr J Bot 130:300–307. https://doi.org/10.1016/j.sajb.2020.01.016

Article  CAS  Google Scholar 

Sheng X, Yu H, Wang J, Shen Y, Gu H (2022) Establishment of a stable, effective and universal genetic transformation technique in the diverse species of Brassica oleracea. Front Plant Sci 13:1021669. https://doi.org/10.3389/fpls.2022.1021669

Article  PubMed  PubMed Central 

Comments (0)

No login
gif