Histopathologic brain age estimation via multiple instance learning

Abner EL, Neltner JH, Jicha GA, Patel E, Anderson SL, Wilcock DM et al (2018) Diffuse amyloid-beta plaques, neurofibrillary tangles, and the impact of APOE in elderly persons’ brains lacking neuritic amyloid plaques. J Alzheimers Dis 64:1307–1324. https://doi.org/10.3233/JAD-180514

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderton BH (1997) Changes in the ageing brain in health and disease. Philos Trans R Soc Lond B Biol Sci 352:1781–1792. https://doi.org/10.1098/rstb.1997.0162

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baek J, Kang M, Hwang SJ (2021) Accurate learning of graph representations with graph multiset pooling. arXiv preprint arXiv:210211533

Beheshti I, Mishra S, Sone D, Khanna P, Matsuda H (2020) T1-weighted MRI-driven brain age estimation in Alzheimer’s disease and Parkinson’s disease. Aging Dis 11:618–628. https://doi.org/10.14336/AD.2019.0617

Article  PubMed  Google Scholar 

Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ et al (2019) Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 25:1301–1309. https://doi.org/10.1038/s41591-019-0508-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caron M, Misra I, Mairal J, Goyal P, Bojanowski P, Joulin A (2020) Unsupervised learning of visual features by contrasting cluster assignments. Adv Neural Inf Process Syst 33:9912–9924

Google Scholar 

Caron M, Touvron H, Misra I, Jegou H, Mairal J, Bojanowski P et al (2021) Emerging properties in self-supervised vision transformers. In: 2021 IEEE/CVF international conference on computer vision (ICCV 2021), pp 9630–9640. https://doi.org/10.1109/Iccv48922.2021.00951

Chen J, Gong Z, Wang W, Wang C, Xu Z, Lv J et al (2022) Adversarial caching training: unsupervised inductive network representation learning on large-scale graphs. IEEE Trans Neural Netw Learn Syst 33:7079–7090. https://doi.org/10.1109/TNNLS.2021.3084195

Article  PubMed  Google Scholar 

Chen RJ, Lu MY, Shaban M, Chen CK, Chen TY, Williamson DFK et al (2021) Whole slide images are 2D point clouds: context-aware survival prediction using patch-based graph convolutional networks. Med Image Comput Comput Assist Interv MICCAI 12908(Pt Viii):339–349. https://doi.org/10.1007/978-3-030-87237-3_33

Article  Google Scholar 

Chen RJ, Lu MY, Weng WH, Chen TY, Williamson DFK, Manz T et al (2021) Multimodal co-attention transformer for survival prediction in gigapixel whole slide images. In: 2021 IEEE/CVF international conference on computer vision (ICCV 2021), pp 3995–4005. https://doi.org/10.1109/Iccv48922.2021.00398

Cole JH (2020) Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, lifestyle, and cognitive factors. Neurobiol Aging 92:34–42. https://doi.org/10.1016/j.neurobiolaging.2020.03.014

Article  PubMed  PubMed Central  Google Scholar 

Cole JH, Franke K (2017) Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci 40:681–690. https://doi.org/10.1016/j.tins.2017.10.001

Article  CAS  PubMed  Google Scholar 

Cole JH, Ritchie SJ, Bastin ME, Valdes Hernandez MC, Munoz Maniega S, Royle N et al (2018) Brain age predicts mortality. Mol Psychiatry 23:1385–1392. https://doi.org/10.1038/mp.2017.62

Article  CAS  PubMed  Google Scholar 

Corbo RM, Scacchi R (1999) Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a ‘thrifty’ allele? Ann Hum Genet 63:301–310. https://doi.org/10.1046/j.1469-1809.1999.6340301.x

Article  CAS  PubMed  Google Scholar 

Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I et al (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128:755–766. https://doi.org/10.1007/s00401-014-1349-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng J, Dong W, Socher R, Li LJ, Li K, Li FF (2009) ImageNet: a large-scale hierarchical image database. In: CVPR: 2009 IEEE conference on computer vision and pattern recognition, vols 1–4, pp 248–255. https://doi.org/10.1109/cvpr.2009.5206848

Duvernoy HM, Cattin F, Risold P-Y (2005) The human hippocampus: functional anatomy, vascularization and serial sections with MRI. Springer, New York

Book  Google Scholar 

Farooqui T, Farooqui AA (2009) Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev 130:203–215. https://doi.org/10.1016/j.mad.2008.11.006

Article  CAS  PubMed  Google Scholar 

Farrell K, Kim S, Han N, Iida MA, Gonzalez EM, Otero-Garcia M et al (2022) Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathol 143:33–53. https://doi.org/10.1007/s00401-021-02379-z

Article  CAS  PubMed  Google Scholar 

Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. arXiv preprint arXiv:190302428

Folstein MF, Robins LN, Helzer JE (1983) The mini-mental state examination. Arch Gen Psychiatry 40:812. https://doi.org/10.1001/archpsyc.1983.01790060110016

Article  CAS  PubMed  Google Scholar 

Franke K, Gaser C (2019) Ten years of BrainAGE as a neuroimaging biomarker of brain aging: what insights have we gained? Front Neurol 10:789. https://doi.org/10.3389/fneur.2019.00789

Article  PubMed  PubMed Central  Google Scholar 

Grill J-B, Strub F, Altché F, Tallec C, Richemond P, Buchatskaya E et al (2020) Bootstrap your own latent—a new approach to self-supervised learning. Adv Neural Inf Process Syst 33:21271–21284

Google Scholar 

Grodstein F, Lemos B, Yu L, Klein HU, Iatrou A, Buchman AS et al (2021) The association of epigenetic clocks in brain tissue with brain pathologies and common aging phenotypes. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2021.105428

Article  PubMed  PubMed Central  Google Scholar 

Hamilton WL, Ying R, Leskovec J (2017) Inductive representation learning on large graphs. Adv Neur Inf Process Syst 30:1025–1035

Google Scholar 

Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367. https://doi.org/10.1016/j.molcel.2012.10.016

Article  CAS  PubMed  Google Scholar 

He KM, Chen XL, Xie SN, Li YH, Dollar P, Girshick R (2022) Masked autoencoders are scalable vision learners. In: 2022 IEEE/CVF conference on computer vision and pattern recognition (CVPR 2022), pp 15979–15988. https://doi.org/10.1109/Cvpr52688.2022.01553

He KM, Zhang XY, Ren SQ, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778. https://doi.org/10.1109/Cvpr.2016.90

Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115. https://doi.org/10.1186/gb-2013-14-10-r115

Article  PubMed  PubMed Central  Google Scholar 

Hou YJ, Dan XL, Babbar M, Wei Y, Hasselbalch SG, Croteau DL et al (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581. https://doi.org/10.1038/s41582-019-0244-7

Article  PubMed  Google Scholar 

Iida MA, Farrell K, Walker JM, Richardson TE, Marx GA, Bryce CH et al (2021) Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study. Acta Neuropathol Commun 9:134. https://doi.org/10.1186/s40478-021-01233-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ilse M, Tomczak JM, Welling M (2018) Attention-based deep multiple instance learning. Proc Mach Learn Res 80:2127–2136

Google Scholar 

Jonsson BA, Bjornsdottir G, Thorgeirsson TE, Ellingsen LM, Walters GB, Gudbjartsson DF et al (2019) Brain age prediction using deep learning uncovers associated sequence variants. Nat Commun 10:5409. https://doi.org/10.1038/s41467-019-13163-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karlovich E, Insausti R, Marx G, Dangoor D, Krassner M, Farinas M et al (2021) A validated neuroanatomical segmentation protocol for the hippocampal subfields in whole-slide images. J Neuropath Exp Neur 80:580

Google Scholar 

Kern S, Zetterberg H, Kern J, Zettergren A, Waern M, Hoglund K et al (2018) Prevalence of preclinical Alzheimer disease: comparison of current classification systems. Neurology 90:e1682–e1691. https://doi.org/10.1212/WNL.0000000000005476

Article  PubMed  PubMed Central  Google Scholar 

Lee J, Burkett BJ, Min HK, Senjem ML, Lundt ES, Botha H et al (2022) Deep learning-based brain age prediction in normal aging and dementia. Nat Aging 2:412–424. https://doi.org/10.1038/s43587-022-00219-7

Article  PubMed  PubMed Central  Google Scholar 

Li RY, Yao JW, Zhu XL, Li YQ, Huang JZ (2018) Graph CNN for survival analysis on whole slide pathological images. Med Image Comput Comput Assist Intervent MICCAI 11071(Pt II):174–182. https://doi.org/10.1007/978-3-030-00934-2_20

Article  Google Scholar 

Li X, Li Q, Wang X, Li D, Li S (2018) Differential age-related changes in structural covariance networks of human anterior and posterior hippocampus. Front Physiol 9:518. https://doi.org/10.3389/fphys.2018.00518

Article  PubMed  PubMed Central  Google Scholar 

Liang H, Zhang F, Niu X (2019) Investigating systematic bias in brain age estimation with application to post-traumatic stress disorders. Hum Brain Mapp 40:3143–3152. https://doi.org/10.1002/hbm.24588

Article  PubMed  PubMed Central  Google Scholar 

Lowe J (2018) Ageing of the brain Greenfield’s neuropathology—two volume set. CRC Press, Boca Raton, pp 873–881

Google Scholar 

Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K et al (2019) DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY) 11:303–327. https://doi.org/10.18632/aging.101684

Article  CAS  PubMed  Google Scholar 

Lu MY, Williamson DFK, Chen TY, Chen RJ, Barbieri M, Mahmood F (2021) Data-efficient and weakly supervised computational pathology on whole-slide images. Nat Biomed Eng 5:555–570. https://doi.org/10.1038/s41551-020-00682-w

Article 

Comments (0)

No login
gif