Misra A, Gopalan H, Jayawardena R, Hills AP, Soares M, Reza-Albarrán AA, et al. Diabetes in developing countries. J Diabetes. 2019;11(7):522–39. https://doi.org/10.1111/1753-0407.12913.
Ali M, Pearson-Stuttard J, Selvin E, Gregg E. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia. 2022;65:13.
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. https://www.sciencedirect.com/science/article/pii/S0168822719312306.
Tomic D, Shaw J, Magliano D. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol. 2022;18:1–15.
Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008;26(2):77–82. https://doi.org/10.2337/diaclin.26.2.77.
Mather KJ, Bebu I, Baker C, Cohen RM, Crandall JP, DeSouza C, et al. Prevalence of microvascular and macrovascular disease in the Glycemia Reduction Approaches in Diabetes—A Comparative Effectiveness (GRADE) Study cohort. Diabetes Res Clin Pract. 2020;165:108235. https://www.sciencedirect.com/science/article/pii/S016882272030485X. Accessed 7 Sep 2023.
Fowler MJ. Microvascular and macrovascular complications of diabetes. Clinical Diabetes. 2011;29(3):116–22. https://doi.org/10.2337/diaclin.29.3.116.
Jaejin An, Gregory A Nichols, Lei Qian, Mercedes A Munis, Teresa N Harrison, Zhuoxin Li, et al. Prevalence and incidence of microvascular and macrovascular complications over 15 years among patients with incident type 2 diabetes. BMJ Open Diab Res Care. 2021;9(1):e001847. http://drc.bmj.com/content/9/1/e001847.abstract. Accessed 7 Sep 2023.
Aronson D. Hyperglycemia and the pathobiology of diabetic complications. Adv Cardiol. 2008;45:1–16. https://doi.org/10.1159/000115118.
Zare F, Ameri H, Madadizadeh F, Reza AM. Health-related quality of life and its associated factors in patients with type 2 diabetes mellitus. SAGE Open Med. 2020;8:2050312120965314. https://doi.org/10.1177/2050312120965314.
Article PubMed PubMed Central Google Scholar
Tran N, Pham B, Le L. Bioactive compounds in anti-diabetic plants: from herbal medicine to modern drug discovery. Biology. 2020;9(9):252.
Article CAS PubMed PubMed Central Google Scholar
Prasathkumar M, Anisha S, Dhrisya C, Becky R, Sadhasivam S. Therapeutic and pharmacological efficacy of selective Indian medicinal plants—a review. Phytomed Plus. 2021;1(2):100029.https://www.sciencedirect.com/science/article/pii/S2667031321000117. Accessed 7 Sep 2023.
Süntar I. Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochem Rev. 2020;19:1199–205.
Raza MA, Ur Rehman F, Anwar S, Zahra A, Rehman A, Rashid E, et al. The medicinal and aromatic activities of cinchona: a review. Asian J Adv Res. 2021;8:42–5.
Kennedy DO, Wightman EL. Herbal Extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr. 2011;2(1):32–50. https://www.sciencedirect.com/science/article/pii/S2161831322005622. Accessed 7 Sep 2023.
Kumar A, Konar A, Garg S, Kaul SC, Wadhwa R. Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochem Int. 2021;149:105124. https://www.sciencedirect.com/science/article/pii/S0197018621001704. Accessed 7 Sep 2023.
Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants. 2017;6(4):42.
Article PubMed PubMed Central Google Scholar
Parveen A, Jin M, Kim SY. Bioactive phytochemicals that regulate the cellular processes involved in diabetic nephropathy. Phytomedicine. 2018;39:146–59. https://www.sciencedirect.com/science/article/pii/S0944711317301927. Accessed 7 Sep 2023.
Duke S, Pan Z, Bajsa-Hirschel J. Proving the mode of action of phytotoxic phytochemicals. Plants. 2020;9:1756.
Article CAS PubMed PubMed Central Google Scholar
Wan MLY, Co V, El-Nezami H. Dietary polyphenol impact on gut health and microbiota. Crit Rev Food Sci Nutr. 2020;61:1–22.
Desborough MJR, Keeling DM. The aspirin story—from willow to wonder drug. Br J Haematol. 2017;177(5):674–83. https://doi.org/10.1111/bjh.14520.
Shanks GD. Historical review: problematic malaria prophylaxis with quinine. Am J Trop Med Hyg. 2016;95(2):269–72. http://europepmc.org/abstract/MED/27185766. Accessed 7 Sep 2023.
Gachelin G, Garner P, Ferroni E, Tröhler U, Chalmers I. Evaluating Cinchona bark and quinine for treating and preventing malaria. J R Soc Med. 2017;110:31–40.
Article CAS PubMed PubMed Central Google Scholar
Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: a review. Molecules. 2022;29(9):2901.
Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Therap. 2002;96(2):67–202. https://www.sciencedirect.com/science/article/pii/S016372580200298X. Accessed 7 Sep 2023.
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. https://www.sciencedirect.com/science/article/pii/S0308814622004939. Accessed 7 Sep 2023.
Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45–63.
CAS PubMed PubMed Central Google Scholar
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436–43. https://doi.org/10.1093/eurheartj/eht149.
Article CAS PubMed PubMed Central Google Scholar
Volpe CMO, Villar-Delfino PH, dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018;9(2):119. https://doi.org/10.1038/s41419-017-0135-z.
Article CAS PubMed PubMed Central Google Scholar
Papachristoforou E, Lambadiari VA, Maratou E, Makrilakis K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with oxidative stress and diabetic complications. J Diabetes Res. 2020;2020:7489795. https://doi.org/10.1155/2020/7489795.
Wang J, Yang X, Zhang J. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells. Cell Signal. 2016;28(8):1099–104. https://www.sciencedirect.com/science/article/pii/S0898656816301085. Accessed 7 Sep 2023.
Burgos-Morón E, Abad-Jiménez Z, Martínez de Marañón A, Iannantuoni F, Escribano-López I, López-Domènech S, et al. Relationship between oxidative Stress, ER stress, and inflammation in type 2 diabetes: the battle continues. J Clin Med. 2019;8(9):1385.
Article PubMed PubMed Central Google Scholar
Mustapha S, Mohammed M, Azemi AK, Jatau AI, Shehu A, Mustapha L, et al. Current status of endoplasmic reticulum stress in type II diabetes. Molecules. 2021;26(14):4362.
Article CAS PubMed PubMed Central Google Scholar
Xie X, Shu R, Yu C, Fu Z, Li Z. Mammalian AKT, the emerging roles on mitochondrial function in diseases. Aging Dis. 2022;13:157–74.
Article PubMed PubMed Central Google Scholar
Sidarala V, Kowluru A. The regulatory roles of mitogen-activated protein kinase (MAPK) pathways in health and diabetes: lessons learned from the pancreatic β-Cell. Recent patents on endocrine, metabolic & immune drug discov. 2016;10(2):76–84. http://www.eurekaselect.com/article/79113. Accessed 9 Sep 2023.
Chau GC, Im DU, Kang TM, Bae JM, Kim W, Pyo S, et al. mTOR controls ChREBP transcriptional activity and pancreatic β cell survival under diabetic stress. J Cell Biol. 2017;216:2091–105.
Article CAS PubMed PubMed Central Google Scholar
Wang W, Zhang C. Targeting β-cell dedifferentiation and transdifferentiation: opportunities and challenges. Endocr Connect. 2021;10(8):R213–28. https://doi.org/10.1530/EC-21-0260.
Santos C, Tanaka L, Wosniak Junior J, Laurindo F. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal. 2009;11:2409–27.
Article CAS PubMed Google Scholar
Bhattarai K, Riaz T, Kim HR, Chae HJ. The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Exp Mol Med. 2021;53:151–67. Accessed 9 Sep 2023.
Article CAS PubMed PubMed Central Google Scholar
Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57(3):145–55. https://www.sciencedirect.com/science/article/pii/S075333220300043X. Accessed 9 Sep 2023.
Zito E, Melo EP, Yang Y, Wahlander Å, Neubert TA, Ron D. Oxidative Protein Folding by an Endoplasmic Reticulum-Localized Peroxiredoxin. Molecular Cell. 2010;40(5):787–97. https://www.sciencedirect.com/science/article/pii/S1097276510008488. Accessed 9 Sep 2023.
Teskey G, Abrahem R, Cao R, Gyurjian K, Islamoglu H, Lucero M, et al. Chapter Five - Glutathione as a Marker for Human Disease. In: Makowski GS, editor. Advances in clinical chemistry. Elsevier; 2018. 141–59. https://www.sciencedirect.com/science/article/pii/S0065242318300398. Accessed 9 Sep 2023.
Tu B, Weissman J. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol. 2004;164:341–6.
Article CAS PubMed PubMed Central Google Scholar
Onoue T, Goto M, Tominaga T, Sugiyama M, Tsunekawa T, Hagiwara D, et al. Reactive oxygen species mediate insulin signal transduction in mouse hypothalamus. Neurosci Lett. 2016;619:1–7. https://www.sciencedirect.com/science/article/pii/S0304394016301410. Accessed 9 Sep 2023.
Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 2011;473:528–31.
Article CAS PubMed PubMed Central Google Scholar
Maamoun H, Abdelsalam S, Zeidan A, Korashy H, Agouni A. Endoplasmic reticulum stress: a critical molecular driver of endothelial dysfunction and cardiovascular disturbances associated with diabetes. Int J Mol Sci. 2019;20:1658.
Article CAS PubMed PubMed Central Google Scholar
Sipkens JA, Hahn N, van den Brand CS, Meischl C, Cillessen SAGM, Smith DEC, et al. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity. Cell Biochem Biophys. 2013;67(2):341–52. https://doi.org/10.1007/s12013-011-9297-y.
Article CAS PubMed Google Scholar
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5. https://doi.org/10.1038/nature09663.
Article CAS PubMed Google Scholar
Higashi Y, Maruhashi T, Noma K, Kihara Y. Oxidative stress and endothelial dysfunction: clinical evidence and therapeutic implications. Trends Cardiovasc Med. 2014;24(4):165–9. https://www.sciencedirect.com/science/article/pii/S1050173813001643. Accessed 9 Sep 2023.
Dana T, Graves RAK. Diabetic complications and dysregulated innate immunity. FBL. 2008;13(4):1227–39.
Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes-An autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2018;1864(11):3805–23. https://www.sciencedirect.com/science/article/pii/S0925443918303272. Accessed 9 Sep 2023.
Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front Immunol. 2020;11:1582. https://doi.org/10.3389/fimmu.2020.01582.
Kumar G, Dey SK, Kundu S. Functional implications of vascular endothelium in regulation of endothelial nitric oxide synthesis to control blood pressure and cardiac functions. Life Sci. 2020;259:118377.
Comments (0)