Beyond Glucose: The Dual Assault of Oxidative and ER Stress in Diabetic Disorders

Misra A, Gopalan H, Jayawardena R, Hills AP, Soares M, Reza-Albarrán AA, et al. Diabetes in developing countries. J Diabetes. 2019;11(7):522–39. https://doi.org/10.1111/1753-0407.12913.

Article  PubMed  Google Scholar 

Ali M, Pearson-Stuttard J, Selvin E, Gregg E. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia. 2022;65:13.

Article  Google Scholar 

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. https://www.sciencedirect.com/science/article/pii/S0168822719312306.

Tomic D, Shaw J, Magliano D. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol. 2022;18:1–15.

Article  Google Scholar 

Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008;26(2):77–82. https://doi.org/10.2337/diaclin.26.2.77.

Article  Google Scholar 

Mather KJ, Bebu I, Baker C, Cohen RM, Crandall JP, DeSouza C, et al. Prevalence of microvascular and macrovascular disease in the Glycemia Reduction Approaches in Diabetes—A Comparative Effectiveness (GRADE) Study cohort. Diabetes Res Clin Pract. 2020;165:108235. https://www.sciencedirect.com/science/article/pii/S016882272030485X. Accessed 7 Sep 2023.

Fowler MJ. Microvascular and macrovascular complications of diabetes. Clinical Diabetes. 2011;29(3):116–22. https://doi.org/10.2337/diaclin.29.3.116.

Article  Google Scholar 

Jaejin An, Gregory A Nichols, Lei Qian, Mercedes A Munis, Teresa N Harrison, Zhuoxin Li, et al. Prevalence and incidence of microvascular and macrovascular complications over 15 years among patients with incident type 2 diabetes. BMJ Open Diab Res Care. 2021;9(1):e001847. http://drc.bmj.com/content/9/1/e001847.abstract. Accessed 7 Sep 2023.

Aronson D. Hyperglycemia and the pathobiology of diabetic complications. Adv Cardiol. 2008;45:1–16. https://doi.org/10.1159/000115118.

Zare F, Ameri H, Madadizadeh F, Reza AM. Health-related quality of life and its associated factors in patients with type 2 diabetes mellitus. SAGE Open Med. 2020;8:2050312120965314. https://doi.org/10.1177/2050312120965314.

Article  PubMed  PubMed Central  Google Scholar 

Tran N, Pham B, Le L. Bioactive compounds in anti-diabetic plants: from herbal medicine to modern drug discovery. Biology. 2020;9(9):252.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prasathkumar M, Anisha S, Dhrisya C, Becky R, Sadhasivam S. Therapeutic and pharmacological efficacy of selective Indian medicinal plants—a review. Phytomed Plus. 2021;1(2):100029.https://www.sciencedirect.com/science/article/pii/S2667031321000117. Accessed 7 Sep 2023.

Süntar I. Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochem Rev. 2020;19:1199–205.

Article  Google Scholar 

Raza MA, Ur Rehman F, Anwar S, Zahra A, Rehman A, Rashid E, et al. The medicinal and aromatic activities of cinchona: a review. Asian J Adv Res. 2021;8:42–5.

Kennedy DO, Wightman EL. Herbal Extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr. 2011;2(1):32–50. https://www.sciencedirect.com/science/article/pii/S2161831322005622. Accessed 7 Sep 2023.

Kumar A, Konar A, Garg S, Kaul SC, Wadhwa R. Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochem Int. 2021;149:105124. https://www.sciencedirect.com/science/article/pii/S0197018621001704. Accessed 7 Sep 2023.

Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants. 2017;6(4):42.

Article  PubMed  PubMed Central  Google Scholar 

Parveen A, Jin M, Kim SY. Bioactive phytochemicals that regulate the cellular processes involved in diabetic nephropathy. Phytomedicine. 2018;39:146–59. https://www.sciencedirect.com/science/article/pii/S0944711317301927. Accessed 7 Sep 2023.

Duke S, Pan Z, Bajsa-Hirschel J. Proving the mode of action of phytotoxic phytochemicals. Plants. 2020;9:1756.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wan MLY, Co V, El-Nezami H. Dietary polyphenol impact on gut health and microbiota. Crit Rev Food Sci Nutr. 2020;61:1–22.

Google Scholar 

Desborough MJR, Keeling DM. The aspirin story—from willow to wonder drug. Br J Haematol. 2017;177(5):674–83. https://doi.org/10.1111/bjh.14520.

Article  PubMed  Google Scholar 

Shanks GD. Historical review: problematic malaria prophylaxis with quinine. Am J Trop Med Hyg. 2016;95(2):269–72. http://europepmc.org/abstract/MED/27185766. Accessed 7 Sep 2023.

Gachelin G, Garner P, Ferroni E, Tröhler U, Chalmers I. Evaluating Cinchona bark and quinine for treating and preventing malaria. J R Soc Med. 2017;110:31–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: a review. Molecules. 2022;29(9):2901.

Article  Google Scholar 

Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Therap. 2002;96(2):67–202. https://www.sciencedirect.com/science/article/pii/S016372580200298X. Accessed 7 Sep 2023.

Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. https://www.sciencedirect.com/science/article/pii/S0308814622004939. Accessed 7 Sep 2023.

Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45–63.

CAS  PubMed  PubMed Central  Google Scholar 

Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436–43. https://doi.org/10.1093/eurheartj/eht149.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Volpe CMO, Villar-Delfino PH, dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018;9(2):119. https://doi.org/10.1038/s41419-017-0135-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papachristoforou E, Lambadiari VA, Maratou E, Makrilakis K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with oxidative stress and diabetic complications. J Diabetes Res. 2020;2020:7489795. https://doi.org/10.1155/2020/7489795.

Wang J, Yang X, Zhang J. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells. Cell Signal. 2016;28(8):1099–104. https://www.sciencedirect.com/science/article/pii/S0898656816301085. Accessed 7 Sep 2023.

Burgos-Morón E, Abad-Jiménez Z, Martínez de Marañón A, Iannantuoni F, Escribano-López I, López-Domènech S, et al. Relationship between oxidative Stress, ER stress, and inflammation in type 2 diabetes: the battle continues. J Clin Med. 2019;8(9):1385.

Article  PubMed  PubMed Central  Google Scholar 

Mustapha S, Mohammed M, Azemi AK, Jatau AI, Shehu A, Mustapha L, et al. Current status of endoplasmic reticulum stress in type II diabetes. Molecules. 2021;26(14):4362.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie X, Shu R, Yu C, Fu Z, Li Z. Mammalian AKT, the emerging roles on mitochondrial function in diseases. Aging Dis. 2022;13:157–74.

Article  PubMed  PubMed Central  Google Scholar 

Sidarala V, Kowluru A. The regulatory roles of mitogen-activated protein kinase (MAPK) pathways in health and diabetes: lessons learned from the pancreatic β-Cell. Recent patents on endocrine, metabolic & immune drug discov. 2016;10(2):76–84. http://www.eurekaselect.com/article/79113. Accessed 9 Sep 2023.

Chau GC, Im DU, Kang TM, Bae JM, Kim W, Pyo S, et al. mTOR controls ChREBP transcriptional activity and pancreatic β cell survival under diabetic stress. J Cell Biol. 2017;216:2091–105.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang W, Zhang C. Targeting β-cell dedifferentiation and transdifferentiation: opportunities and challenges. Endocr Connect. 2021;10(8):R213–28. https://doi.org/10.1530/EC-21-0260.

Santos C, Tanaka L, Wosniak Junior J, Laurindo F. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal. 2009;11:2409–27.

Article  CAS  PubMed  Google Scholar 

Bhattarai K, Riaz T, Kim HR, Chae HJ. The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Exp Mol Med. 2021;53:151–67. Accessed 9 Sep 2023.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57(3):145–55. https://www.sciencedirect.com/science/article/pii/S075333220300043X. Accessed 9 Sep 2023.

Zito E, Melo EP, Yang Y, Wahlander Å, Neubert TA, Ron D. Oxidative Protein Folding by an Endoplasmic Reticulum-Localized Peroxiredoxin. Molecular Cell. 2010;40(5):787–97. https://www.sciencedirect.com/science/article/pii/S1097276510008488. Accessed 9 Sep 2023.

Teskey G, Abrahem R, Cao R, Gyurjian K, Islamoglu H, Lucero M, et al. Chapter Five - Glutathione as a Marker for Human Disease. In: Makowski GS, editor. Advances in clinical chemistry. Elsevier; 2018. 141–59. https://www.sciencedirect.com/science/article/pii/S0065242318300398. Accessed 9 Sep 2023.

Tu B, Weissman J. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol. 2004;164:341–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Onoue T, Goto M, Tominaga T, Sugiyama M, Tsunekawa T, Hagiwara D, et al. Reactive oxygen species mediate insulin signal transduction in mouse hypothalamus. Neurosci Lett. 2016;619:1–7. https://www.sciencedirect.com/science/article/pii/S0304394016301410. Accessed 9 Sep 2023.

Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 2011;473:528–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maamoun H, Abdelsalam S, Zeidan A, Korashy H, Agouni A. Endoplasmic reticulum stress: a critical molecular driver of endothelial dysfunction and cardiovascular disturbances associated with diabetes. Int J Mol Sci. 2019;20:1658.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sipkens JA, Hahn N, van den Brand CS, Meischl C, Cillessen SAGM, Smith DEC, et al. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity. Cell Biochem Biophys. 2013;67(2):341–52. https://doi.org/10.1007/s12013-011-9297-y.

Article  CAS  PubMed  Google Scholar 

Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5. https://doi.org/10.1038/nature09663.

Article  CAS  PubMed  Google Scholar 

Higashi Y, Maruhashi T, Noma K, Kihara Y. Oxidative stress and endothelial dysfunction: clinical evidence and therapeutic implications. Trends Cardiovasc Med. 2014;24(4):165–9. https://www.sciencedirect.com/science/article/pii/S1050173813001643. Accessed 9 Sep 2023.

Dana T, Graves RAK. Diabetic complications and dysregulated innate immunity. FBL. 2008;13(4):1227–39.

Google Scholar 

Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes-An autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2018;1864(11):3805–23. https://www.sciencedirect.com/science/article/pii/S0925443918303272. Accessed 9 Sep 2023.

Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front Immunol. 2020;11:1582. https://doi.org/10.3389/fimmu.2020.01582.

Kumar G, Dey SK, Kundu S. Functional implications of vascular endothelium in regulation of endothelial nitric oxide synthesis to control blood pressure and cardiac functions. Life Sci. 2020;259:118377.

Comments (0)

No login
gif