Abid Y, Casillo A, Gharsallah H, Joulak I, Lanzetta R, Corsaro MM et al (2018) Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. Int J Biol Macromol 108:719–728. https://doi.org/10.1016/j.ijbiomac.2017.10.155
Article PubMed CAS Google Scholar
Akashi K, Miyake C, Yokota A (2001) Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett 508(3):438–442. https://doi.org/10.1016/S0014-5793(01)03123-4
Article PubMed CAS Google Scholar
Akoğlu A (2020) The effect of some environmental conditions on planktonic growth and biofilm formation by some lactic acid bacteria isolated from a local cheese in Turkey. Biotech Lett 42(3):481–492. https://doi.org/10.1007/s10529-020-02794-4
Alsaud N, Almajed A, Lwusaybie A, Alsubaie A, Alobaidan H, Alessa J et al (2023) The halotolerant probiotic bacterium Enterococcus lactis ASF-2 from Al-Asfar Lake, Saudi Arabia, reduces inflammation in carrageenan-induced paw edema. Microorganisms 11(10):2415. https://doi.org/10.3390/microorganisms11102415
Article PubMed PubMed Central CAS Google Scholar
Altaf F, Wu S, Kasim V (2021) Role of fibrinolytic enzymes in anti-thrombosis therapy. Front Mol Biosci 8:680397. https://doi.org/10.3389/fmolb.2021.680397
Article PubMed PubMed Central CAS Google Scholar
Amadoro C, Rossi F, Piccirilli M, Colavita G (2015) Tetragenococcus koreensis is part of the microbiota in a traditional Italian raw fermented sausage. Food Microbiol 50:78–82. https://doi.org/10.1016/j.fm.2015.03.011
Article PubMed CAS Google Scholar
Araya M, Morelli L, Reid G, Sanders M, Stanton C, Pineiro M, Embarek P (2002) Guidelines for the evaluation of probiotics in food. Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada, pp 1–11. https://www.foodinprogress.com/wp-content/uploads/2019/04/Guidelines-for-the-Evaluation-of-Probiotics-in-Food.pdf
Atasoy G, Şanlıbaba P, Anlı R (2022) Isolation and identification of tyramine-producing lactic acid bacteria from fermented olives. Turk J Agric For Food Sci Technol 10:1871–1876. https://doi.org/10.24925/turjaf.v10i10.1871-1876.5345
Austin S, Nowikovsky K (2021) Mitochondrial osmoregulation in evolution, cation transport and metabolism. Biochim Biophys Acta Bioenerg 1862(5):148368. https://doi.org/10.1016/j.bbabio.2021.148368
Article PubMed CAS Google Scholar
Ceniti C, Costanzo N, Spina AA, Rodolfi M, Tilocca B, Piras C et al (2021) Fungal contamination and aflatoxin B1 detected in hay for dairy cows in South Italy. Front Nutr 8:704976. https://doi.org/10.3389/fnut.2021.704976
Article PubMed PubMed Central CAS Google Scholar
Corral P, Amoozegar MA, Ventosa A (2020) Halophiles and their biomolecules: recent advances and future applications in biomedicine. Mar Drugs 18(1):33. https://doi.org/10.3390/md18010033
Cui Y, Qu X, Li H, He S, Liang H, Zhang H, Ma Y (2012) Isolation of halophilic lactic acid bacteria from traditional Chinese fermented soybean paste and assessment of the isolates for industrial potential. Eur Food Res Technol 234(5):797–806
Chaiyanan S, Chaiyanan S, Maugel T, Huq A, Robb FT, Colwell RR (1999) Polyphasic taxonomy of a novel Halobacillus, Halobacillus thailandensis sp. nov. isolated from fish sauce. Syst Appl Microbiol 22(2):360–365. https://doi.org/10.1016/S0723-2020(99)80043-5
Article PubMed CAS Google Scholar
Chamignon C, Guéneau V, Medina S, Deschamps J, Gil-Izquierdo A, Briandet R et al (2020) Evaluation of the probiotic properties and the capacity to form biofilms of various Lactobacillus strains. Microorganisms 8(7):1053. https://doi.org/10.3390/microorganisms8071053
Article PubMed PubMed Central CAS Google Scholar
Cheng C, Dong Z, Han X, Sun J, Wang H, Jiang L et al (2017) Listeria monocytogenes 10403S arginine repressor ArgR finely tunes arginine metabolism regulation under acidic conditions. Front Microbiol 8:145. https://doi.org/10.3389/fmicb.2017.00145
Article PubMed PubMed Central Google Scholar
Choi U, Park Si H, Lee Han B, Son Ji E, Lee C-R (2023) Coordinated and distinct roles of peptidoglycan carboxypeptidases DacC and DacA in cell growth and shape maintenance under stress conditions. Microbiol Spectr 11(3):e00014–00023. https://doi.org/10.1128/spectrum.00014-23
Article PubMed PubMed Central CAS Google Scholar
Chuea-nongthon C, Rodtong S, Yongsawatdigul J, Steele J (2017) Draft genome sequences of Tetragenococcus muriaticus strains 3MR10-3 and PMC-11-5 isolated from Thai fish sauce during natural fermentation. Genome Announc 5:e00198–e217. https://doi.org/10.1128/genomeA.00198-17
Chun BH, Han DM, Kim KH, Jeong SE, Park D, Jeon CO (2019) Genomic and metabolic features of Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses. Food Microbiol 83:36–47. https://doi.org/10.1016/j.fm.2019.04.009
Article PubMed CAS Google Scholar
da Silva JV, Oliveira C, Ramalho L (2021) Effects of prenatal exposure to aflatoxin B1: a review. Molecules 26:7312. https://doi.org/10.3390/molecules26237312
Article PubMed PubMed Central CAS Google Scholar
Damiano S, Sozio C, La Rosa G, Guida B, Faraonio R, Santillo M, Mondola P (2020) Metabolism regulation and redox state: insight into the role of superoxide dismutase 1. Int J Mol Sci 21(18):6606. https://doi.org/10.3390/ijms21186606
Article PubMed PubMed Central CAS Google Scholar
Daoud L, Ben Ali M (2020) Halophilic microorganisms: Interesting group of extremophiles with important applications in biotechnology and environment. In: Salwan R, Sharma V (eds) Physiological and biotechnological aspects of extremophiles, 1st edn. Elsevier Inc, pp 51–64
Das O, Kumar SH, Nayak BB (2020) Relative abundance of halophilic archaea and bacteria in diverse salt-fermented fish products. LWT 117:108688. https://doi.org/10.1016/j.lwt.2019.108688
De Lourdes MM, Pérez D, García MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3(1):38–51. https://doi.org/10.3390/life3010038
Article ADS CAS Google Scholar
Deng Z, Hou K, Zhao J, Wang H (2021) The probiotic properties of lactic acid bacteria and their applications in animal husbandry. Curr Microbiol 79(1):22. https://doi.org/10.1007/s00284-021-02722-3
Article PubMed CAS Google Scholar
Devanthi PVP, Linforth R, Onyeaka H, Gkatzionis K (2018) Effects of co-inoculation and sequential inoculation of Tetragenococcus halophilus and Zygosaccharomyces rouxii on soy sauce fermentation. Food Chem 240:1–8. https://doi.org/10.1016/j.foodchem.2017.07.094
Article PubMed CAS Google Scholar
Devaraj Y, Halami PM (2021) Fibrinolytic enzymes in fermented food products. In: Amit KR, Anu Appaiah KA (eds) Bioactive compounds in fermented foods, 1st edn. CRC Press, Boca Raton, pp 120–140
Diguță CF, Nițoi GD, Matei F, Luță G, Cornea CP (2020) The biotechnological potential of Pediococcus spp. isolated from Kombucha microbial consortium. Foods 9(12):1780. https://doi.org/10.3390/foods9121780
Article PubMed PubMed Central CAS Google Scholar
Doeun D, Davaatseren M, Chung M-S (2017) Biogenic amines in foods. Food Sci Biotechnol 26(6):1463–1474. https://doi.org/10.1007/s10068-017-0239-3
Article PubMed PubMed Central CAS Google Scholar
Doron S, Snydman DR (2015) Risk and safety of probiotics. Clin Infect Dis 60(2):S129–S134. https://doi.org/10.1093/cid/civ085
Article PubMed PubMed Central Google Scholar
Dosuky AS, Elsayed TR, Yousef ET, Barakat OS, Nasr NF (2022) Isolation, identification, and application of lactic acid-producing bacteria using salted cheese whey substrate and immobilized cells technology. J Genet Eng Biotechnol 20(1):26. https://doi.org/10.1186/s43141-022-00316-5
Article PubMed PubMed Central Google Scholar
Elidrissi A, Ezzaky Y, Boussif K, Achemchem F (2023) Isolation and characterization of bioprotective lactic acid bacteria from Moroccan fish and seafood. Braz J Microbiol 54(3):2117–2127. https://doi.org/10.1007/s42770-023-01077-0
Article PubMed CAS Google Scholar
Flemming H-C, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P et al (2023) The biofilm matrix: multitasking in a shared space. Nature Rev Microbiol 21(2):70–86. https://doi.org/10.1038/s41579-022-00791-0
Fourie KR, Wilson HL (2020) Understanding GroEL and DnaK stress response proteins as antigens for bacterial diseases. Vaccines 8(4):773. https://doi.org/10.3390/vaccines8040773
Article PubMed PubMed Central CAS Google Scholar
Guan R, Chu D, Han X, Miao X, Li H (2021) Advances in the development of microbial double-stranded RNA production systems for application of RNA interference in agricultural pest control. Front Bioeng Biotechnol 9:753790. https://doi.org/10.3389/fbioe.2021.753790
Comments (0)