Andrade-Linares, D.R., Veresoglou, S.D., Rillig, M.C., 2016. Temperature priming and memory in soil filamentous fungi. Fungal Ecology 21, 10–15.
Anthony, M.A., Bender, S.F., van der Heijden, M.G.A., 2023. Enumerating soil biodiversity. Proceedings of the National Academy of Sciences of the United States of America 120, e2304663120.
Antibus, R.K., Sinsabaugh, R.L., 1993. The extraction and quantification of ergosterol from ectomycorrhizal fungi and roots. Mycorrhiza 3, 137–144.
Baldrian, P., Větrovský, T., Cajthaml, T., Dobiášová, P., Petránková, M., Šnajdr, J., Eichlerová, I., 2013. Estimation of fungal biomass in forest litter and soil. Fungal Ecology 6, 1–11.
Bar-On, Y.M., Phillips, R., Milo, R., 2018. The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America 115, 6506–6511.
Barajas-Aceves, M., Hassan, M., Tinoco, R., Vazquez-Duhalt, R., 2002. Effect of pollutants on the ergosterol content as indicator of fungal biomass. Journal of Microbiological Methods 50, 227–236.
Brondz, I., Høiland, K., Ekeberg, D., 2004. Multivariate analysis of fatty acids in spores of higher basidiomycetes: a new method for chemotaxonomical classification of fungi. Journal of Chromatography B 800, 303–307.
Camenzind, T., Mason-Jones, K., Mansour, I., Rillig, M.C., Lehmann, J., 2023. Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nature Geoscience 16, 115–122.
Camenzind, T., Philipp Grenz, K., Lehmann, J., Rillig, M.C., 2021. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecology Letters 24, 208–218.
Camenzind, T., Weimershaus, P., Lehmann, A., Aguilar-Trigueros, C., Rillig, M.C., 2022. Soil fungi invest into asexual sporulation under resource scarcity, but trait spaces of individual isolates are unique. Environmental Microbiology 24, 2962–2978.
Canarini, A., Fuchslueger, L., Schnecker, J., Metze, D., Nelson, D. B., Kahmen, A., Watzka, M., Pötsch, E.M., Schaumberger, A., Bahn, M., Richter, A., 2023. Soil fungi remain active and invest in storage compounds during drought independent of future climate conditions. bioRxiv, DOI: https://doi.org/10.1101/2023.10.23.563577.
Charcosset, J.Y., Chauvet, E., 2001. Effect of culture conditions on ergosterol as an indicator of biomass in the aquatic hyphomycetes. Applied and Environmental Microbiology 67, 2051–2055.
Chen, C., Chen, X.L., Chen, H.Y.H., 2023. Mapping N deposition impacts on soil microbial biomass across global terrestrial ecosystems. Geoderma 433, 116429.
Crowther, T.W., van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L., Averill, C., Maynard, D.S., 2019. The global soil community and its influence on biogeochemistry. Science 365, eaav0550.
Delmont, T.O., Prestat, E., Keegan, K.P., Faubladier, M., Robe, P., Clark, I.M., Pelletier, E., Hirsch, P.R., Meyer, F., Gilbert, J.A., Le Paslier, D., Simonet, P., Vogel, T.M., 2012. Structure, fluctuation and magnitude of a natural grassland soil metagenome. The ISME Journal 6, 1677–1687.
Djajakirana, G., Joergensen, R.G., Meyer, B., 1996. Ergosterol and microbial biomass relationship in soil. Biology and Fertility of Soils 22, 299–304.
Domsch, K.H., Gams, W., Anderson, T.H., 2007. Compendium of Soil Fungi. 2nd ed. Eching: IHW-Verlag.
Ekblad, A., Mikusinska, A., Agren, G.I., Menichetti, L., Wallander, H., Vilgalys, R., Bahr, A., Eriksson, U., 2016. Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization. New Phytologist 211, 874–885.
Federle, T.W., 1986. Microbial Distribution in Soil - New Techniques. In: Megusar, F., Gantar, M., eds. Perspectives in Microbial Ecology. Ljulbljana: Slovene Society for Microbiology, 493–498.
Fierer, N., Jackson, J.A., Vilgalys, R., Jackson, R.B., 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology 71, 4117–4120.
Frostegård, Å., Bååth, E., 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils 22, 59–65.
Frostegård, Å., Tunlid, A., Bååth, E., 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods 14, 151–163.
Frostegård, A., Tunlid, A., Bååth, E., 1993. Phospholipid fatty-acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy-metals. Applied and Environmental Microbiology 59, 3605–3617.
Frostegård, A., Tunlid, A., Bååth, E., 2011. Use and misuse of PLFA measurements in soils. Soil Biology & Biochemistry 43, 1621–1625.
Gorka, S., Darcy, S., Horak, J., Imai, B., Mohrlok, M., Salas, E., Richter, A., Schmidt, H., Wanek, W., Kaiser, C., Canarini, A., 2023. Beyond PLFA: concurrent extraction of neutral and glycolipid fatty acids provides new insights into soil microbial communities. Soil Biology and Biochemistry 187, 109205.
Green, C.T., Scow, K.M., 2000. Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeology Journal 8, 126–141.
Grimmett, I.J., Shipp, K.N., Macneil, A., Bärlocher, F., 2013. Does the growth rate hypothesis apply to aquatic hyphomycetes? Fungal Ecology 6, 493–500.
He, L.Y., Lipson, D.A., Mazza Rodrigues, J.L., Mayes, M., Björk, R. G., Glaser, B., Thornton, P., Xu, X.F., 2021. Dynamics of fungal and bacterial biomass carbon in natural ecosystems: site-level applications of the CLM-microbe model. Journal of Advances in Modeling Earth Systems 13, e2020MS002283.
Heaton, L.L.M., Jones, N.S., Fricker, M.D., 2016. Energetic constraints on fungal growth. The American Naturalist 187, E27–E40.
Hsieh, C.W.C., Cannella, D., Jørgensen, H., Felby, C., Thygesen, L. G., 2014. Cellulase inhibition by high concentrations of monosaccharides. Journal of Agricultural and Food Chemistry 62, 3800–3805.
Hungate, B.A., Mau, R.L., Schwartz, E., Caporaso, J.G., Dijkstra, P., van Gestel, N., Koch, B.J., Liu, C.M., McHugh, T.A., Marks, J.C., Morrissey, E.M., Price, L.B., 2015. Quantitative microbial ecology through stable isotope probing. Applied and Environmental Microbiology 81, 7570–7581.
Joergensen, R.G., 2018. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils 54, 559–568.
Joergensen, R.G., 2022. Phospholipid fatty acids in soil—drawbacks and future prospects. Biology and Fertility of Soils 58, 1–6.
Joergensen, R.G., Emmerling, C., 2006. Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. Journal of Plant Nutrition and Soil Science 169, 295–309.
Joergensen, R.G., Wichern, F., 2008. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biology and Biochemistry 40, 2977–2991.
Junicke, H., Abbas, B., Oentoro, J., van Loosdrecht, M., Kleerebezem, R., 2014. Absolute quantification of individual biomass concentrations in a methanogenic coculture. AMB Express 4, 35.
Keck, F., Rimet, F., Bouchez, A., Franc, A., 2016. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecology and Evolution 6, 2774–2780.
Klamer, M., Bååth, E., 2004. Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2ω6,9. Soil Biology and Biochemistry 36, 57–65.
Klein, D.A., Paschke, M.W., 2004. Filamentous fungi: the indeterminate lifestyle and microbial ecology. Microbial Ecology 47, 224–235.
Kramer, S., Dibbern, D., Moll, J., Huenninghaus, M., Koller, R., Krueger, D., Marhan, S., Urich, T., Wubet, T., Bonkowski, M., Buscot, F., Lueders, T., Kandeler, E., 2016. Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil. Frontiers in Microbiology 7, 1524.
Lavrinienko, A., Jernfors, T., Koskimäki, J.J., Pirttilä, A.M., Watts, P. C., 2021. Does intraspecific variation in rDNA copy number affect analysis of microbial communities? Trends in Microbiology 29, 19–27.
Comments (0)