Different no-till grain production systems with spp. affect soil microbial community structure, biomass and activity in a tropical Ultisol

Alhameid, A., Singh, J., Sekaran, U., Kumar, S., Singh, S., 2019. Soil biological health: influence of crop rotational diversity and tillage on soil microbial properties. Soil Science Society of America Journal 83, 1431–1442.

Article  CAS  Google Scholar 

Ameloot, N., Sleutel, S., Case, S.D.C., Alberti, G., McNamara, N.P., Zavalloni, C., Vervisch, B., Vedove, G., De Neve, S., 2014. C mineralization and microbial activity in four biochar field experiments several years after incorporation. Soil Biology & Biochemistry 78, 195–203.

Article  CAS  Google Scholar 

Ashworth, A.J., DeBruyn, J.M., Allen, F.L., Radosevich, M., Owens, P.R., 2017. Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biology & Biochemistry 114, 210–219.

Article  CAS  Google Scholar 

Bai, Z., Caspari, T., Gonzalez, M.R., Batjes, N.H., Mäder, P., Bünemann, E.K., de Goede, R., Brussaard, L., Xu, M., Ferreira, C.S.S., Reintam, E., Fan, H., Mihelič, R., Glavan, M., Tóth, Z., 2018. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agriculture, Ecosystems & Environment 265, 1–7.

Article  Google Scholar 

Bonetti, J.A., Paulino, H.B., Souza, E.D., Carneiro, M.A.C., Caetano, J.O., 2018. Soil physical and biological properties in an integrated crop-livestock system in the Brazilian Cerrado. Pesquisa Agropecuária Brasileira 53, 1239–1247.

Article  Google Scholar 

Bongiorno, G., Bünemann, E.K., Oguejiofor, C.U., Meier, J., Gort, G., Comans, R., Mäder, P., Brussaard, L., de Goede, R., 2019. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators 99, 38–50.

Article  CAS  Google Scholar 

Brennan, E.B., Acosta-Martinez, V., 2017. Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production. Soil Biology & Biochemistry 109, 188–204.

Article  CAS  Google Scholar 

Bünemann, E.K., Bongiorno, G., Bai, Z., Creamer, R.E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T.W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J.W., Brussaard, L., 2018. Soil quality - A critical review. Soil Biology & Biochemistry 120, 105–125.

Article  Google Scholar 

Chen, J., Chen, D., Xu, Q., Fuhrmann, J.J., Li, L., Pan, G., Li, Y., Qin, H., Liang, C., Sun, X., 2019. Organic carbon quality, composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar. Biology and Fertility of Soils 55, 185–197.

Article  CAS  Google Scholar 

Chen, J., Luo, Y., García-Palacios, P., Cao, J., Dacal, M., Zhou, X., Li, J., Xia, J., Niu, S., Yang, H., Shelton, S., Guo, W., Groenigen, K.J., 2018. Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration. Global Change Biology 24, 4816–4826.

Article  Google Scholar 

Chen, M., Arato, M., Borghi, L., Nouri, E., Reinhardt, D., 2018. Beneficial services of arbuscular mycorrhizal fungi-from ecology to application. Frontiers in Plant Science 9, 1–14.

Article  Google Scholar 

Coelho, M.E.H., Freitas, F.C.L., Cunha, J.L.X.L., Silva, K.S., Grangeiro, L.C., Oliveira, J.B., 2013. Coberturas do solo sobre a amplitude térmica e a produtividade de pimentão. Planta Daninha 31, 369–378.

Article  Google Scholar 

Delelegn, Y.T., Purahong, W., Blazevic, A., Yitaferu, B., Wubet, T., Göransson, H., Godbold, D.L., 2017. Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia. Scientific Reports 7, 1–12.

Article  CAS  Google Scholar 

Deutsch, E.S., Bork, E.W., Willms, W.D., 2010. Soil moisture and plant growth responses to litter and defoliation impacts in Parkland grasslands. Agriculture, Ecosystems & Environment 135, 1–9.

Article  Google Scholar 

Eriksson, K.-E., Wood, T.M., 1985. Biodegradation of Cellulose. In: Higuchi, T., ed. Biosynthesis and Biodegradation of Wood Components. Academic Press, pp. 469–503.

Fernandes, M.F., Lopes, L.D., Dick, R.P., 2021. Microbial dynamics associated with the decomposition of coconut and maize residues in a microcosm experiment with tropical soils under two nitrogen fertilization levels. Journal of Applied Microbiology 131, 1261–1273.

Article  CAS  Google Scholar 

Fierer, N., Wood, S.A., Mesquita, C.P.B., 2021. How microbes can, and cannot, be used to assess soil health. Soil Biology & Biochemistry 153, 108111.

Article  CAS  Google Scholar 

Finney, D.M., Buyer, J.S., Kaye, J.P., 2017. Living cover crops have immediate impacts on soil microbial community structure and function. Journal of Soil and Water Conservation 72, 361–373.

Article  Google Scholar 

Flores-Rentería, D., Sánchez-Gallén, I., Morales-Rojas, D., Larsen, J., Álvarez-Sánchez, J., 2020. Changes in the abundance and composition of a microbial community associated with land use change in a Mexican tropical rain forest. Journal of Soil Science and Plant Nutrition 20, 1144–1155.

Article  Google Scholar 

Gunina, A., Kuzyakov, Y., 2015. Sugars in soil and sweets for microorganisms: Review of origin, content, composition and fate. Soil Biology & Biochemistry 90, 87–100.

Article  CAS  Google Scholar 

Hammer, O., Harper, D.A.T., Ryan, P.D., 2007. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 9.

Google Scholar 

Harris, R.F., 1981. Effect of water potential on microbial growth and activity. In: Parr, J.F., Gardner, W.R., Elliott, L.F., eds. Water Potential Relations in Soil Microbiology, John Wiley & Sons, New York. v. 9, 23–95.

Google Scholar 

Huggins, D.R., Allmaras, R.R., Clapp, C.E., Lamb, J.A., Randall, G. W., 2007. Corn-soybean sequence and tillage effects on soil carbon dynamics and storage. Soil Science Society of America Journal 71, 145–154.

Article  CAS  Google Scholar 

Jangid, K., Williams, M.A., Franzluebbers, A.J., Schmidt, T.M., Coleman, D.C., Whitman, W.B., 2011. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biology & Biochemistry 43, 2184–2193.

Article  CAS  Google Scholar 

Jenkinson, D.S., 1976. The effects of biocidal treatments on metabolism in soil-IV. The decomposition of fumigated organisms in soil. Soil Biology & Biochemistry 8, 203–208.

Article  CAS  Google Scholar 

Jesus, E.C., Liang, C., Quensen, J.F., Susilawati, E., Jackson, R.D., Balser, T.C., Tiedje, J.M., 2016. Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States. Global Change Biology Bioenergy 8, 481–494.

Article  CAS  Google Scholar 

Kaiser, C., Frank, A., Wild, B., Koranda, M., Richter, A., 2010. Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9. Soil Biology & Biochemistry 42, 1650–1652.

Article  CAS  Google Scholar 

Kakumanu, M.L., Ma, L., Williams, M.A., 2019. Drought-induced soil microbial amino acid and polysaccharide change and their implications for C-N cycles in a climate change world. Scientific Reports 9, 1–12.

Article  CAS  Google Scholar 

Laroca, J.V.S., Souza, J.M.A., Pires, G.C., Pires, G.J.C., Pacheco, L.P., Silva, F.D., Wruck, F.J., Carneiro, M.A.C., Silva, L.S., Souza, E.D., 2018. Soil quality and soybean productivity in crop-livestock integrated system in no-tillage. Pesquisa Agropecuária Brasileira 53, 1248–1258.

Article  Google Scholar 

Lehmann, A., Zheng, W., Rillig, M.C., 2017. Soil biota contributions to soil aggregation. Nature Ecology & Evolution 1, 1828–1835.

Article  Google Scholar 

Lehmann, J., Bossio, D.A., Kogel-Knabber, I., Rillig, M.C., 2020. The concept and future prospects of soil health. Nature Reviews Earth & Environment 1, 544–553.

Article  Google Scholar 

Li, M., Hu, J., Lin, X., 2021. The roles and performance of arbuscular mycorrhizal fungi in intercropping systems. Soil Ecology Letters 4, 319–327.

Article  CAS  Google Scholar 

Liang, G., Wu, H., Houssou, A.A., Cai, D., Wu, X., Gao, L., Wang, B., Li, S., 2018. Soil respiration, glomalin content, and enzymatic activity response to straw application in a wheat-maize rotation system. Journal of Soils and Sediments 18, 697–707.

Article  CAS  Google Scholar 

Lopes, L.D., Fernandes, M.F., 2020. Changes in microbial community structure and physiological profile in a kaolinitic tropical soil under different conservation agricultural practices. Applied Soil Ecology 152, 103545.

Article  Google Scholar 

Lopes, L.D., Junior, R.C.F., Pacheco, E.P., Fernandes, M.F., 2021. Shifts in microbial and physicochemical parameters associated with increasing soil quality in a tropical Ultisol under high seasonal variation. Soil & Tillage Research 206, 104819.

Article  Google Scholar 

Mariscal-Sancho, I., Ball, B., McKenzie, B., 2018. Influence of tillage practices, organic manures and extrinsic factors on ²-glucosidase activity: The final step of cellulose hydrolysis. Soil Systems 2, 1–13.

Article  Google Scholar 

McCune, B., Mefford, M.J., 1999. PC-ORD: multivariate analysis of ecological data; Version 4 for Windows; [User’s Guide]. MjM software design.

McCune, B.P., Grace, J.B., 2002. Analysis of ecological communities. Gleneden Beach, Oregon: MJM Software Design.

Google Scholar 

Menezes, K.M.S., Silva, D.K.A., Gouveia, G.V., Costa, M.M., Queiroz, M.A.A., Yano-Melo, A.M., 2019. Shading and intercropping with buffelgrass pasture affect soil biological properties in the Brazilian semi-arid region. Catena 175, 236–250.

Article  CAS  Google Scholar 

Mielke, P.W., Berry, K.J., 2007. Permutation methods: a distance function approach. New York: Springer.

Book  Google Scholar 

Nazih, N., Finlay-Moore, O., Hartel, P.G., Fuhrmann, J.J., 2001. Whole soil fatty acid methyl ester (FAME) profiles of early soybean rhizosphere as affected by temperature and matric water potential. Soil Biology & Biochemistry 33, 693–696.

Article 

Comments (0)

No login
gif