Horneck G., Klaus D. M., Rocco L. 2010. Space Microbiology. Microbiol. Mol. Biol. Rev. 74, 121–156.
Article ADS CAS PubMed PubMed Central Google Scholar
Horneck G., Bucker H., Reitz G. 1994. Long-term survival of bacteria spores in space. Adv. Space Res. 14, 41–45.
Article ADS CAS PubMed Google Scholar
Rabbow E., Rettberg P., Barczyk S., Bohmeier M., Parpart A., Panitz C., Horneck G., Burfeindt J., Molter F., Jaramillo F. 2015. The astrobiological mission EXPOSE-R on board of the International Space Station. Int. J. Astrobiol. 14, 3–16.
Baranov I.M., Novikova N.D., Polikarpov N.A., Sychev V.N., Levinskikh M.A., Alekseev V.R., Okuda T., Sugimoto M., Gusev O.A., Grigoriev A.I. 2009. Biorisk experiment: 13-month exposition of resting forms of organisms on the outer side of the Russian Segment of the International Space Station (preliminary results). Dokl. Biochem. Biophys. 426, 206–209.
de La Torre R., Sancho L.G., Horneck G., de los Ríos A., Wierzchos J., Olsson-Francis K., Cockell C.S., Rettberg P., Berger T., de Vera J.P.P., Ott S., Frías J.M., Melendi P.G., Lucas M.M., Reina M., Pintado A., Demets R. 2010. Survival of lichens and bacteria exposed to outer space conditions—results of the Lithopanspermia experiments. Icarus. 208 (2), 735–748.
Article ADS CAS Google Scholar
Ott E., Kawaguchi Y., Kölbl D., Rabbow E., Rettberg P., Mora M., Moissl-Eichinger C., Weckwerth W., Yamagishi A., Milojevic T. 2020. Molecular repertoire of Deinococcus radiodurans after 1 year of exposure outside the International Space Station within the Tanpopo mission. Microbiome. 8 (1), 150.
Article CAS PubMed PubMed Central Google Scholar
Nicholson W.L., Moeller R., Horneck G. 2012. Transcriptomic responses of germinating Bacillus subtilis spores exposed to 1.5 years of space and simulated martian conditions on the EXPOSE-E experiment PR-OTECT. Astrobiology. 12 (5), 469–486.
Article ADS CAS PubMed Google Scholar
Vaishampayan P.A., Rabbow E., Horneck G., Venkateswaran K.J. 2012. Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions. Astrobiology. 12 (5), 487–497.
Article ADS CAS PubMed Google Scholar
Mastroleo F., Van Houdt R., Leroy B., Benotmane M.A., Janssen A., Mergeay M., Vanhavere F., Hendrickx L., Wattiez R., Leys N. 2009. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME J. 3 (12), 1402–1419.
Article CAS PubMed Google Scholar
Wilson J.W., Ott C.M., Honer zu Bentrup K., Ramamurthy R., Quick L., Porwollik S., Cheng P., McClelland M., Tsaprailis G., Radabaugh T., Hunt A., Fernandez D., Richter E., Shah M., Kilcoyne M., Joshi L., Nelman-Gonzalez M., Hing S., Parra M., Dumars P., Norwood K., Bober R., Devich, J. Ruggles A., Goulart C., Rupert M., Stodieck L., Stafford P., Catella L., Schurr M.J., Buchanan K., Morici L., McCracken J., Allen P., Baker-Coleman C., Hammond T., Vogel J., Nelson R., Pierson D.L., Stefanyshyn-Piper H.M., Nickerson C.A. 2007. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl. Acad. Sci. USA. 104 (41), 16299–16304.
Article ADS CAS PubMed PubMed Central Google Scholar
Klaus D.M., Howard H.N. 2006. Antibiotic efficacy and microbial virulence during space flight. Trends Biotechnol. 24, 131–136.
Article CAS PubMed Google Scholar
Su L., Chang D., Liu C. 2013. The development of space microbiology in the future: The value and significance of space microbiology research. Future Microbiol. 8, 5–8.
Oshurkova V.I., Deshevaya E.A., Suzina N.E., Shubralova E.V., Shcherbakova V.A. 2021. Methanogenic archaea in space conditions. Aerospace Environ. Med. 55 (1), 63‒69.
Deshevaya E.A., Shubralova E.V., Fialkina S.V., Guridov A.A., Novikova N.D., Tsygankov O.S., Lianko P.S., Orlov O.I., Morzunov S.P., Rizvanov A.A., Nikolaeva I.V. 2020. Microbiological investigation of the space dust collected from the external surfaces of the international space station. BioNanoScience. 10, 81–88.
MagocT., Salzberg S. 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 27 (21), 2957–2963.
Article CAS PubMed PubMed Central Google Scholar
Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., Kubal M., Meyer F., Olsen G.J., Olson R., Osterman A.L., Overbeek R.A., McNeil L.K., Paarmann D., Paczian T., Parrello B., Pusch G.D., Zagnitko O. 2008. The RAST Server: Rapid annotations using subsystems technology. BMC Genomics. 9, 75.
Article PubMed PubMed Central Google Scholar
Langdon W.B. 2015. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 8, 1.
Article CAS PubMed PubMed Central Google Scholar
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler G., Alekseyev M.A., Pevzner P.A. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 (5), 455–477.
Article MathSciNet CAS PubMed PubMed Central Google Scholar
Liang Q., Liu C., Xu R., Song M., Zhou Z., Li H., Dai W., Yang M., Yu Y., Chen H. 2021. fIDBAC: A platform for fast bacterial genome identification and typing. Front. Microbiol. 18, 723577.
Saitou N., Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.
Tamura K., Stecher G., Kumar S. 2021. MEGA 11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 25, 3022–3027.
Jolley K.A., Bliss C.M., Bennett J.S., Bratcher H.B., Brehony C., Colles F.M., Wimalarathna H., Harrison O.B., Sheppard S.K., Cody A.J., Maiden M.C.J. 2012. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology (Reading). 158 (Pt 4), 1005–1015.
Article CAS PubMed PubMed Central Google Scholar
Chaumeil P.A., Mussig A.J., Hugenholtz P., Parks D.H. 2019. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 36 (6), 1925–1927.
Article PubMed PubMed Central Google Scholar
Ruiz-GarcíaC.,BéjarV., Martínez-ChecaF., LlamasI., QuesadaE. 2005. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55 (Pt 1), 191–195.
Moeller R., Setlow P., Horneck G., Berger T., Reitz G., Rettberg P., Doherty A.J., Okayasu R., Nicholson W.L. 2008). Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment. J. Bacteriol. 190, 1134–1140.
Article CAS PubMed Google Scholar
Moeller R., Reitz G., Berger T., Okayasu R., Nicholson W.L., Horneck G. 2010. Astrobiological aspects of the mutagenesis of cosmic radiation on bacterial spores. Astrobiology. 10 (5), 509–521.
Article ADS CAS PubMed Google Scholar
Hullo M.F., Moszer I., Danchin A., Martin-Verstraete I. 2001). CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183, 5426–5430.
Article CAS PubMed PubMed Central Google Scholar
Lenhart J.S., Schroeder J.W., Walsh B.W., Simmons L.A. 2012. DNA repair and genome maintenance in Bacillus subtilis. Microbiol. Mol. Biol. Rev. 76, 530–564.
Article CAS PubMed PubMed Central Google Scholar
Rebeil R., Sun Y., Chooback L., Pedraza-Reyes M., Kinsland C., Begley T.P., Nicholson W.L. 1998). Spore photoproduct lyase from Bacillus subtilis spores is a novel iron-sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases. J. Bacteriol. 180, 4879–4885.
Article CAS PubMed PubMed Central Google Scholar
Liu Y., Jeraldo P., Herbert W., McDonough S., Eckloff B., de Vera J.P., Cockell C., Leya T., Baqué M., Jen J., Schulze-Makuch D., Walther-Antonio M. 2022. Non-random genetic alterations in the cyanobacterium Nostoc sp. exposed to space conditions. Sci. Rep. 12 (1), 12580.
Article ADS CAS PubMed PubMed Central Google Scholar
Setlow P. 2014. Spore resistance properties. Microbiol. Spectr. 2 (5), TBS-0003-2012.
Chiang A.J., Mohan G.B.M., Singh N.K., Vaishampayan P.A., Kalkum M., Venkateswaran K. 2019. Alteration of proteomes in first-generation cultures of Bacillus pumilus spores exposed to outer space. mSystems. 4 (4), e00195-19. https://doi.org/10.1128/msystems.00195-19
Article CAS PubMed PubMed Central Google Scholar
Peyvan K., Karouia F., Cooper J.J., Chamberlain J., Suciu D., Slota M., Pohorille A. 2019. Gene expression measurement module (GEMM) for space application: design and validation. Life Sci. Space Res. 22, 55–67.
Comments (0)