Obrosova I.G., Chung S.S., Kador P.F. 2010. Diabetic cataracts: Mechanisms and management. Diabetes Metab. Res. Rev. 26, 172‒180. https://doi.org/10.1002/dmrr.1075
Article CAS PubMed Google Scholar
Wu T.T., Chen Y.Y., Chang H.Y., Kung Y.H., Tseng C.J., Cheng P.W. 2020. AKR1B1-induced epithelial-mesenchymal transition mediated by RAGE-oxidative stress in diabetic cataract lens. Antioxidants (Basel). 9, 273. https://doi.org/10.3390/antiox9040273
Article CAS PubMed PubMed Central Google Scholar
Bai J., Jiang G., Zhao M., Wang S. 2022. Ghrelin mitigates high-glucose-induced oxidative damage and apoptosis in lens epithelial cells. J. Diabetes Res. 2022, 1373533. https://doi.org/10.1155/2022/1373533
Chen L., Chen Y., Ding W., Zhan T., Zhu J., Zhang L., Wang H., Shen B., Wang Y. 2022. Oxidative stress-induced TRPV2 expression increase is involved in diabetic cataracts and apoptosis of lens epithelial cells in a high-glucose environment. Cells. 11 (7), 1196. https://doi.org/10.3390/cells11071196
Article CAS PubMed PubMed Central Google Scholar
Kiziltoprak H., Tekin K., Inanc M., Goker Y.S. 2019. Cataract in diabetes mellitus. World J. Diabetes. 10, 140‒153. https://doi.org/10.4239/wjd.v10.i3.140
Article PubMed PubMed Central Google Scholar
Jin X., Jin H., Shi Y., Guo Y., Zhang H. 2018. Pyroptosis, a novel mechanism implicated in cataracts. Mol. Med. Rep. 18, 2277‒2285. https://doi.org/10.3892/mmr.2018.9188
Article CAS PubMed Google Scholar
Fu J., Wu H. 2023. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu. Rev. Immunol. 41, 301‒316. https://doi.org/10.1146/annurev-immunol-081022-021207
Article CAS PubMed PubMed Central Google Scholar
Kovacs S.B., Miao E.A. 2017. Gasdermins: Effectors of pyroptosis. Trends Cell Biol. 27, 673‒684. https://doi.org/10.1016/j.tcb.2017.05.005
Article CAS PubMed PubMed Central Google Scholar
Mrugacz M., Pony-Uram M., Bryl A., Zorena K. 2023. Current approach to the pathogenesis of diabetic cataracts. Int. J. Mol. Sci. 24 (7), 6317. https://doi.org/10.3390/ijms24076317
Article CAS PubMed PubMed Central Google Scholar
Yu P., Zhang X., Liu N., Tang L., Peng C., Chen X. 2021. Pyroptosis: Mechanisms and diseases. Signal. Transduct. Target Ther. 6, 128. https://doi.org/10.1038/s41392-021-00507-5
Article PubMed PubMed Central Google Scholar
Zheng D., Liu J., Piao H., Zhu Z., Wei R., Liu K. 2022. ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front. Immunol. 13, 1039241. https://doi.org/10.3389/fimmu.2022.1039241
Article CAS PubMed PubMed Central Google Scholar
Chhunchha B., Kumar R., Kubo E., Thakur P., Singh D.P. 2023. Prdx6 regulates Nlrp3 inflammasome activation-driven inflammatory response in lens epithelial cells. Int. J. Mol. Sci. 24 (22), 16276. https://doi.org/10.3390/ijms242216276
Article CAS PubMed PubMed Central Google Scholar
Arnott J., Horsewood P., Kelton J.G. 1987. Measurement of platelet-associated IgG in animal models of immune and nonimmune thrombocytopenia. Blood. 69, 1294‒1299.
Article CAS PubMed Google Scholar
Xia X., Wang X., Cheng Z., Qin W., Lei L., Jiang J., Hu J. 2019. The role of pyroptosis in cancer: Pro-cancer or pro-"host"? Cell Death Dis. 10, 650. https://doi.org/10.1038/s41419-019-1883-8
Article CAS PubMed PubMed Central Google Scholar
Akbal A., Dernst A., Lovotti M., Mangan M.S.J., McManus R.M., Latz E. 2022. How location and cellular signaling combine to activate the NLRP3 inflammasome. Cell. Mol. Immunol. 19, 1201‒1214. https://doi.org/10.1038/s41423-022-00922-w
Article CAS PubMed PubMed Central Google Scholar
Fang Y., Tian S., Pan Y., Li W., Wang Q., Tang Y., Yu T., Wu X., Shi Y., Ma P., Shu Y. 2020. Pyroptosis: A new frontier in cancer. Biomed. Pharmacother. 121, 109595. https://doi.org/10.1016/j.biopha.2019.109595
Article CAS PubMed Google Scholar
Guo H., Callaway J.B., Ting J.P. 2015. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677‒687. https://doi.org/10.1038/nm.3893
Article CAS PubMed PubMed Central Google Scholar
Guey B., Bodnar M., Manie S.N., Tardivel A., Petrilli V. 2014. Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc. Natl. Acad. Sci. U. S. A. 111, 17254‒1759. https://doi.org/10.1073/pnas.1415756111
Article CAS PubMed PubMed Central Google Scholar
Schroder K., Tschopp J. 2010. The inflammasomes. Cell. 140, 821‒832. https://doi.org/10.1016/j.cell.2010.01.040
Article CAS PubMed Google Scholar
Sun Y., Rong X., Li D., Jiang Y., Lu Y., Ji Y. 2020. Down-regulation of CRTAC1 attenuates UVB-induced pyroptosis in HLECs through inhibiting ROS production. Biochem. Biophys. Res. Commun. 532, 159‒165. https://doi.org/10.1016/j.bbrc.2020.07.028
Article CAS PubMed Google Scholar
Song G., Wang J., Liu J., Ruan Y. 2023. Dimethyl fumarate ameliorates erectile dysfunction in bilateral cavernous nerve injury rats by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis of nerve via activation of Nrf2/HO-1 signaling pathway. Redox Biol. 68, 102938. https://doi.org/10.1016/j.redox.2023.102938
Article CAS PubMed PubMed Central Google Scholar
Lian L., Le Z., Wang Z., Chen Y.A., Jiao X., Qi H., Hejtmancik J.F., Ma X., Zheng Q., Ren Y. 2023. SIRT1 inhibits high glucose-induced TXNIP/NLRP3 inflammasome activation and cataract formation. Invest. Ophthalmol. Vis. Sci. 64, 16. https://doi.org/10.1167/iovs.64.3.16
Article CAS PubMed PubMed Central Google Scholar
Ye T., Wang C., Yan J., Qin Z., Qin W., Ma Y., Wan Q., Lu W., Zhang M., Tay F.R., Jiao K., Niu L. 2024. Lysosomal destabilization: A missing link between pathological calcification and osteoarthritis. Bioact. Mater. 34, 37‒50. https://doi.org/10.1016/j.bioactmat.2023.12.001
Article CAS PubMed Google Scholar
Thiagarajan R., Varsha M., Srinivasan V., Ravichandran R., Saraboji K. 2019. Vitamin K1 prevents diabetic cataract by inhibiting lens aldose reductase 2 (ALR2) activity. Sci. Rep. 9, 14684. https://doi.org/10.1038/s41598-019-51059-2
Article CAS PubMed PubMed Central Google Scholar
Chen M.F., Liou S.S., Hong T.Y., Kao S.T., Liu I.M. 2018. Gigantol has protective effects against high glucose-evoked nephrotoxicity in mouse glomerulus mesangial cells by suppressing ROS/MAPK/NF-kappaB signaling pathways. Molecules. 24 (1), 80. https://doi.org/10.3390/molecules24010080
Article CAS PubMed PubMed Central Google Scholar
Li D., Liu G.Q., Lu P.R. 2019. High glucose: Activating autophagy and affecting the biological behavior of human lens epithelial cells. Int. J. Ophthalmol. 12, 1061‒1066. https://doi.org/10.18240/ijo.2019.07.02
Article PubMed PubMed Central Google Scholar
Lim J.C., Caballero Arredondo M., Braakhuis A.J., Donaldson P.J. 2020. Vitamin C and the lens: New insights into delaying the onset of cataract. Nutrients. 12 (10), 3142.
Comments (0)