Hornbuckle WE, Simpson KW, Tennant BC. Gastrointestinal function: clinical biochemistry of domestic animals. Elsevier; 2008. p. 413–57.
Balimane PV, Chong S. Cell culture-based models for intestinal permeability: a critique. Drug Discov Today. 2005;10:335–43.
Article CAS PubMed Google Scholar
Pasztoi M, Ohnmacht C. Tissue niches formed by intestinal mesenchymal stromal cells in mucosal homeostasis and immunity. Int J Mol Sci. 2022;23:5181.
Article CAS PubMed PubMed Central Google Scholar
Yu QH, Yang Q. Diversity of tight junctions (TJs) between gastrointestinal epithelial cells and their function in maintaining the mucosal barrier. Cell Biol Int. 2009;33:78–82.
Owens B, Simmons A. Intestinal stromal cells in mucosal immunity and homeostasis. Mucosal Immunol. 2013;6:224–34.
Article CAS PubMed Google Scholar
Hoffmann JC, Pawlowski NN, Kühl AA, Höhne W, Zeitz M. Animal models of inflammatory bowel disease: an overview. Pathobiology. 2002;70:121–30.
Li N, Wang D, Sui Z, Qi X, Ji L, Wang X, et al. Development of an improved three-dimensional in vitro intestinal mucosa model for drug absorption evaluation. Tissue Eng Part C Methods. 2013;19:708–19.
Article CAS PubMed Google Scholar
Pereira C, Araújo F, Barrias CC, Granja PL, Sarmento B. Dissecting stromal-epithelial interactions in a 3D in vitro cellularized intestinal model for permeability studies. Biomaterials. 2015;56:36–45.
Article CAS PubMed Google Scholar
Ayehunie S, Landry T, Stevens Z, Armento A, Hayden P, Klausner M. Human primary cell-based organotypic microtissues for modeling small intestinal drug absorption. Pharm Res. 2018;35:1–18.
Peters MF, Landry T, Pin C, Maratea K, Dick C, Wagoner MP, et al. Human 3D gastrointestinal microtissue barrier function as a predictor of drug-induced diarrhea. Toxicol Sci. 2019;168:3–17.
Article CAS PubMed Google Scholar
Darling NJ, Mobbs CL, González-Hau AL, Freer M, Przyborski S. Bioengineering novel in vitro co-culture models that represent the human intestinal mucosa with improved Caco-2 structure and barrier function. Front Bioeng Biotechnol. 2020;8:992.
Article PubMed PubMed Central Google Scholar
Macedo MH, Martínez E, Barrias CC, Sarmento B. Development of an improved 3D in vitro intestinal model to perform permeability studies of paracellular compounds. Front Bioeng Biotechnol. 2020;8:1076.
Zhang J, Penny J, Lu JR. Development of a novel in vitro 3D intestinal model for permeability evaluations. Int J Food Sci Nutr. 2020;71:549–62.
Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.
Article CAS PubMed PubMed Central Google Scholar
Ensari A, Marsh MN. Exploring the villus. GHFBB. 2018;11:181.
Miner JH, Li C, Mudd JL, Go G, Sutherland AE. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development. 2004;131:2247–56.
Article CAS PubMed Google Scholar
Pöschl E, Schlötzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development. 2004;131:1619–28.
Powell D, Pinchuk I, Saada J, Chen X, Mifflin R. Mesenchymal cells of the intestinal lamina propria. Annu Rev Physiol. 2011;73:213.
Article CAS PubMed PubMed Central Google Scholar
Roulis M, Flavell RA. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation. 2016;92:116–31.
Article CAS PubMed Google Scholar
Boudry G, Yang P-C, Perdue MH. Small intestine. In: Johnson L, editor. Anatomy: encyclopedia of gastroenterology. New York: Elsevier; 2004. p. 404–9.
Pender S, Lionetti P, Murch S, Wathan N, MacDonald T. Proteolytic degradation of intestinal mucosal extracellular matrix after lamina propria T cell activation. Gut. 1996;39:284–90.
Article CAS PubMed PubMed Central Google Scholar
Kim Y, Ko H, Kwon IK, Shin K. Extracellular matrix revisited: roles in tissue engineering. Int Neurourol J. 2016;20:S23.
Article PubMed PubMed Central Google Scholar
Stzepourginski I, Nigro G, Jacob J-M, Dulauroy S, Sansonetti PJ, Eberl G, et al. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc Natl Acad Sci. 2017;114:E506–13.
Article CAS PubMed PubMed Central Google Scholar
Göke M, Kanai M, Podolsky DK. Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor. Am J Physiol Gastrointest. 1998;274:G809–18.
Desmoulière A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 2005;13:7–12.
Fan H, Wang A, Wang Y, Sun Y, Han J, Chen W, et al. Innate lymphoid cells: regulators of gut barrier function and immune homeostasis. J Immunol Res. 2019;2019:2525984.
Article PubMed PubMed Central Google Scholar
Dunn-Walters DK, Boursier L, Spencer J. Hypermutation, diversity and dissemination of human intestinal lamina propria plasma cells. Eur J Immunol. 1997;27:2959–64.
Article CAS PubMed Google Scholar
Befus AD, Dyck N, Goodacre R, Bienenstock J. Mast cells from the human intestinal lamina propria. Isolation, histochemical subtypes, and functional characterization. J Immunol. 1987;138:2604–10.
Article CAS PubMed Google Scholar
Vallon-Eberhard A, Landsman L, Yogev N, Verrier B, Jung S. Transepithelial pathogen uptake into the small intestinal lamina propria. J Immunol. 2006;176:2465–9.
Article CAS PubMed Google Scholar
Gelberg HB. Comparative anatomy, physiology, and mechanisms of disease production of the esophagus, stomach, and small intestine. Toxicol Pathol. 2014;42:54–66.
Article CAS PubMed Google Scholar
Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell. 2018;175:372–86.
Article CAS PubMed PubMed Central Google Scholar
Pilling D, Fan T, Huang D, Kaul B, Gomer RH. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE. 2009;4:e7475.
Article PubMed PubMed Central Google Scholar
Thomson CA, Nibbs RJ, McCoy KD, Mowat AM. Immunological roles of intestinal mesenchymal cells. Immunology. 2020;160:313–24.
Article CAS PubMed PubMed Central Google Scholar
Pinchuk I, Mifflin R, Saada J, Powell D. Intestinal mesenchymal cells. Curr Gastroenterol Rep. 2010;12:310–8.
Article CAS PubMed PubMed Central Google Scholar
Pompili S, Latella G, Gaudio E, Sferra R, Vetuschi A. The charming world of the extracellular matrix: a dynamic and protective network of the intestinal wall. Front Med. 2021;8:610189.
Karsdal M. Biochemistry of collagens, laminins and elastin: structure, function and biomarkers. Academic Press; 2019.
Zhang W, Ge Y, Cheng Q, Zhang Q, Fang L, Zheng J. Decorin is a pivotal effector in the extracellular matrix and tumour microenvironment. Oncotarget. 2018;9:5480.
Article PubMed PubMed Central Google Scholar
Dignass AU, Tsunekawa S, Podolsky DK. Fibroblast growth factors modulate intestinal epithelial cell growth and migration. Gastroenterology. 1994;106:1254–62.
Article CAS PubMed Google Scholar
Fibbe WE, Van Damme J, Billiau A, Duinkerken N, Lurvink E, Ralph P, et al. Human fibroblasts produce granulocyte-CSF, macrophage-CSF, and granulocyte-macrophage-CSF following stimulation by interleukin-1 and poly (rI). poly (rC). Blood. 1988;72:860–6.
Comments (0)