Molecular biomarker approaches to prevention of post-traumatic osteoarthritis

Kraus, V. B. et al. Proposed study designs for approval based on a surrogate endpoint and a post-marketing confirmatory study under FDA’s accelerated approval regulations for disease modifying osteoarthritis drugs. Osteoarthritis Cartilage 27, 571–579 (2019).

CAS  PubMed  Google Scholar 

Hochberg, M. et al. Osteoarthritis. In: Liebowitz J, Seo P, (eds) Clinical Innovation in Rheumatology, Past, Present, and Future. 47–63 (CRC Press/Taylor and Francis, 2023).

Mendez, M. E. et al. LPS-induced inflammation prior to injury exacerbates the development of post-traumatic osteoarthritis in mice. J. Bone Min. Res. 35, 2229–2241 (2020).

CAS  Google Scholar 

Long, H., Liu, Q., Zhang, Y., Guo, A. & Lin, J. Prevalence estimates of osteoarthritis from Global Burden of Disease Study 2019. Arthritis Rheumatol. https://doi.org/10.1002/art.42089 2022.

Thomas, A. C., Hubbard-Turner, T., Wikstrom, E. A. & Palmieri-Smith, R. M. Epidemiology of posttraumatic osteoarthritis. J. Athl. Train. 52, 491–496 (2017).

PubMed  PubMed Central  Google Scholar 

Mahmoudian, A., Lohmander, L. S., Jafari, H. & Luyten, F. P. Towards classification criteria for early-stage knee osteoarthritis: a population-based study to enrich for progressors. Semin. Arthritis Rheum. 51, 285–291 (2021).

PubMed  Google Scholar 

Watt, F. E. Posttraumatic osteoarthritis: what have we learned to advance osteoarthritis? Curr. Opin. Rheumatol. 33, 74–83 (2021).

CAS  PubMed  Google Scholar 

Aman, Z. S. et al. Acute intervention with selective interleukin-1 inhibitor therapy may reduce the progression of posttraumatic osteoarthritis of the knee: a systematic review of current evidence. arthroscopy. J. Arthrosc. Relat. Surg. 38, 2543–2556 (2022).

Google Scholar 

Salman, L. A., Ahmed, G., Dakin, S. G., Kendrick, B. & Price, A. Osteoarthritis: a narrative review of molecular approaches to disease management. Arthritis Res. Ther. 25, 27 (2023).

PubMed  PubMed Central  Google Scholar 

Mahmoudian, A., Lohmander, L. S., Mobasheri, A., Englund, M. & Luyten, F. P. Early-stage symptomatic osteoarthritis of the knee — time for action. Nat. Rev. Rheumatol. 17, 621–632 (2021).

PubMed  Google Scholar 

Luyten, F. P. et al. Toward classification criteria for early osteoarthritis of the knee. Semin. Arthritis Rheum. 47, 457–463 (2018).

CAS  PubMed  Google Scholar 

Harkey, M. et al. Longitudinal change in the prevalence of early knee osteoarthritis symptoms across various time-periods after anterior cruciate ligament reconstruction. Osteoarthritis Cartilage 30, S232–S233 (2022).

Google Scholar 

Bedson, J. & Croft, P. R. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet. Disord. 9, 116 (2008).

PubMed  PubMed Central  Google Scholar 

Cameron, K. L., Shing, T. L. & Kardouni, J. R. The incidence of post-traumatic osteoarthritis in the knee in active duty military personnel compared to estimates in the general population. Osteoarthritis Cartilage 25, S184–S185 (2017).

Google Scholar 

Watt, F. E. et al. Towards prevention of post-traumatic osteoarthritis: report from an international expert working group on considerations for the design and conduct of interventional studies following acute knee injury. Osteoarthritis Cartilage 27, 23–33 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Group, M. et al. The clinical radiographic incidence of posttraumatic osteoarthritis 10 years after anterior cruciate ligament reconstruction: data from the MOON nested cohort. Am. J. Sports Med. 49, 1251–1261 (2021).

Google Scholar 

Williams, A., Winalski, C. S. & Chu, C. R. Early articular cartilage MRI T2 changes after anterior cruciate ligament reconstruction correlate with later changes in T2 and cartilage thickness. J. Orthop. Res. 35, 699–706 (2017).

PubMed  Google Scholar 

Li, A. K. et al. Six-month post-surgical elevations in cartilage T1rho relaxation times are associated with functional performance 2 years after ACL reconstruction. J. Orthop. Res. 38, 1132–1140 (2020).

PubMed  Google Scholar 

Nambi, G. et al. Comparative effects of virtual reality training and sensory motor training on bone morphogenic proteins and inflammatory biomarkers in post-traumatic osteoarthritis. Sci. Rep. 10, 15864 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Hu, Y., Shen, Y., Chen, D. & Zhong, W. Effects of arthroscopic anterior cruciate ligament reconstruction combined with sodium hyaluronate on knee function and inflammatory markers in anterior cruciate ligament injury patients with or without knee osteoarthritis. Adv. Clin. Exp. Med. 32, 533–538 (2023).

PubMed  Google Scholar 

Nambi, G. et al. Effects of isokinetic knee muscle training on bone morphogenetic proteins and inflammatory biomarkers in post-traumatic osteoarthritis after anterior cruciate ligament injury: a randomized trial. J. Rehabil. Med. 52, jrm00098 (2020).

PubMed  Google Scholar 

Larsson, S., Struglics, A., Lohmander, L. S. & Frobell, R. Surgical reconstruction of ruptured anterior cruciate ligament prolongs trauma-induced increase of inflammatory cytokines in synovial fluid: an exploratory analysis in the KANON trial. Osteoarthritis Cartilage 25, 1443–1451 (2017).

CAS  PubMed  Google Scholar 

Kingery, M. T. et al. Changes in the synovial fluid cytokine profile of the knee between an acute anterior cruciate ligament injury and surgical reconstruction. Am. J. Sports Med. 50, 451–460 (2022).

PubMed  Google Scholar 

Elsaid, K. A. et al. Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum. 58, 1707–1715 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Sullivan, B. et al. Human synovial fluid interleukin-6, but not type II collagen breakdown, positively correlated with pain after anterior cruciate ligament injury and reconstruction. J. Orthop. Res. 41, 300–306 (2023).

CAS  PubMed  Google Scholar 

Heilmeier, U. et al. Infrapatellar fat pad abnormalities are associated with a higher inflammatory synovial fluid cytokine profile in young adults following ACL tear. Osteoarthritis Cartilage 28, 82–91 (2020).

CAS  PubMed  Google Scholar 

Struglics, A., Larsson, S., Kumahashi, N., Frobell, R. & Lohmander, L. S. Changes in cytokines and aggrecan ARGS neoepitope in synovial fluid and serum and in C-terminal crosslinking telopeptide of type II collagen and N-terminal crosslinking telopeptide of type I collagen in urine over five years after anterior cruciate ligament rupture: an exploratory analysis in the knee anterior cruciate ligament, nonsurgical versus surgical treatment trial. Arthritis Rheumatol. 67, 1816–1825 (2015).

CAS  PubMed  Google Scholar 

Jacobs, C. A. et al. The Inflamma-type: a patient phenotype characterized by a dysregulated inflammatory response after lower extremity articular fracture. Inflamm. Res. 72, 9–11 (2023).

CAS  PubMed  Google Scholar 

Watt, F. E. et al. Acute molecular changes in synovial fluid following human knee injury: association with early clinical outcomes. Arthritis Rheumatol. 68, 2129–2140 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Clair, A. J. et al. Alterations in synovial fluid biomarker levels in knees with meniscal injury as compared with asymptomatic contralateral knees. Am. J. Sports Med. 47, 847–856 (2019).

PubMed  Google Scholar 

Marchand, L. S., Rothberg, D. L., Higgins, T. F. & Haller, J. M. Greater acute articular inflammatory response in tibial plafond fractures as compared to ankle fractures. Foot Ankle Int. 43, 1465–1473 (2022).

PubMed  Google Scholar 

Liu, B. et al. Matrix metalloproteinase activity and prostaglandin E2 are elevated in the synovial fluid of meniscus tear patients. Connect. Tissue Res. 58, 305–316 (2017).

CAS  PubMed  Google Scholar 

Roemer, F. W. et al. Molecular and structural biomarkers of inflammation at two years after acute anterior cruciate ligament injury do not predict structural knee osteoarthritis at five years. Arthritis Rheumatol. 71, 238–243 (2019).

CAS  PubMed  Google Scholar 

Catterall, J. B., Stabler, T. V., Flannery, C. R. & Kraus, V. B. Changes in serum and synovial fluid biomarkers after acute injury (NCT00332254). Arthritis Res. Ther. 12, R229 (2010).

PubMed  PubMed Central  Google Scholar 

Lattermann, C. et al. A multicenter study of early anti-inflammatory treatment in patients with acute anterior cruciate ligament tear. Am. J. Sports Med. 45, 325–333 (2017).

PubMed  Google Scholar 

Lohmander, L. S., Atley, L. M., Pietka, T. A. & Eyre, D. R. The release of crosslinked peptides from type II collagen into human synovial fluid is increased soon after joint injury and in osteoarthritis. Arthritis Rheum. 48, 3130–3139 (2003).

CAS  PubMed  Google Scholar 

Jacobs, C. A. et al. Increased effusion synovitis for those with a dysregulated inflammatory response after an anterior cruciate ligament injury. Cureus 15, e37862 (2023).

PubMed  PubMed Central  Google Scholar 

Tiderius, C. J., Olsson, L. E., Nyquist, F. & Dahlberg, L. Cartilage glycosaminoglycan loss in the acute phase after an anterior cruciate ligament injury: delayed gadolinium-enhanced magnetic resonance imaging of cartilage and synovial fluid analysis. Arthritis Rheum. 52, 120–127 (2005).

CAS  PubMed  Google Scholar 

Neuman, P., Dahlberg, L. E., Englund, M. & Struglics, A. Concentrations of synovial fluid biomarkers and the prediction of knee osteoarthritis 16 years after anterior cruciate ligament injury. Osteoarthritis Cartilage 25, 492–498 (2017).

CAS  PubMed  Google Scholar 

Neuman, P., Larsson, S., Lohmander, L. S. & Struglics, A. Higher aggrecan 1-F21 epitope concentration in synovial fluid early after anterior cruciate ligament injury is associated with worse knee cartilage quality assessed by gadolinium enhanced magnetic resonance imaging 20 years later. BMC Musculoskelet. Disord. 21, 798 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Lohmander, L. S., Neame, P. J. & Sandy, J. D. The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum. 36, 1214–1222 (1993).

CAS  PubMed  Google Scholar 

Kraus, V. B. et al. Effects of intraarticular IL1-Ra for acute anterior cruciate ligament knee injury: a randomized controlled pilot trial (NCT00332254). Osteoarthritis Cartilage 20, 271–278 (2012).

CAS  PubMed  Google Scholar 

Markus, D. H. et al. Concentration of synovial fluid biomarkers on the day of anterior cruciate ligament (ACL)-reconstruction predict size and depth of cartilage lesions on 5-year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 31, 1753–1760 (2023).

PubMed  Google Scholar 

Svoboda, S. J. et al. Changes in serum biomarkers of cartilage turnover after anterior cruciate ligament injury. Am. J. Sports Med. 41, 2108–2116 (2013).

PubMed  Google Scholar 

Nishida, Y. et al. Serum cartilage oligomeric matrix protein detects early osteoarthritis in patients with anterior cruciate ligament deficiency. Arthroscopy 38, 873–878 (2022).

PubMed  Google Scholar 

Yoshida, H. et al. Relationship between pre-radiographic cartilage damage following anterior cruciate ligament injury and biomarkers of cartilage turnover in clinical practice: a cross-sectional observational study. Osteoarthritis Cartilage 21, 831–838 (2013).

Comments (0)

No login
gif