Decoding the role of DNA methylation in allergic diseases: from pathogenesis to therapy

Dierick BJH, et al. Burden and socioeconomics of asthma, allergic rhinitis, atopic dermatitis and food allergy. Expert Rev Pharmacoecon Outcomes Res. 2020;20:437–53.

Article  PubMed  Google Scholar 

Meng Y, Wang C, Zhang L. Advances and novel developments in allergic rhinitis. Allergy. 2020;75:3069–76. https://doi.org/10.1111/all.14586

Article  PubMed  Google Scholar 

Asher MI, García-Marcos L, Pearce NE, Strachan DP. Trends in worldwide asthma prevalence. Eur Respir. 2020. https://doi.org/10.1183/13993003.02094-2020.

Article  Google Scholar 

Ober C. Asthma genetics in the post-GWAS era. Ann Am Thorac Soc. 2016;13(Suppl 1):S85-90.

Article  PubMed  PubMed Central  Google Scholar 

Renz H, et al. Gene-environment interaction in chronic disease: a European science foundation forward look. J Allergy Clin Immunol. 2011;128:S27-49.

Article  PubMed  Google Scholar 

Legaki E, Taka S, Papadopoulos NG. The complexity in DNA methylation analysis of allergic diseases. Curr Opin Allergy Clin Immunol. 2023;23:172–8.

Article  CAS  PubMed  Google Scholar 

Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187:226–32.

Article  CAS  PubMed  Google Scholar 

Compere SJ, Palmiter RD. DNA methylation controls the inducibility of the mouse metallothionein-I gene lymphoid cells. Cell. 1981;25:233–40.

Article  CAS  PubMed  Google Scholar 

Tost J. DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Mol Biotechnol. 2010;44:71–81.

Article  CAS  PubMed  Google Scholar 

Schübeler D. Function and information content of DNA methylation. Nature. 2015;517:321–6.

Article  PubMed  Google Scholar 

Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

Article  CAS  PubMed  Google Scholar 

Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514.

Article  CAS  PubMed  Google Scholar 

Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294:2536–9.

Article  PubMed  Google Scholar 

Baubec T, et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature. 2015;520:243–7.

Article  CAS  PubMed  Google Scholar 

Weinberg DN, et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature. 2019;573:281–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu H, et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science. 2010;329:444–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, Yin Q, Inoue A, Zhang C, Zhang Y. Allelic H3K27me3 to allelic DNA methylation switch maintains noncanonical imprinting in extraembryonic cells. Sci. 2019. https://doi.org/10.1126/sciadv.aay7246.

Article  PubMed  PubMed Central  Google Scholar 

Weinberg DN, et al. Two competing mechanisms of DNMT3A recruitment regulate the dynamics of de novo DNA methylation at PRC1-targeted CpG islands. Nat Genet. 2021;53:794–800.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin CC, Chen YP, Yang WZ, Shen JCK, Yuan HS. Structural insights into CpG-specific DNA methylation by human DNA methyltransferase 3B. Nucleic Acids Res. 2020;48:3949–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smallwood SA, et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet. 2011;43:811–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92.

Article  CAS  PubMed  Google Scholar 

Beck DB, et al. Delineation of a human mendelian disorder of the dna demethylation machinery: TET3 deficiency. Am J Hum Genet. 2020;106:234–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu TP, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011;477:606–10.

Article  CAS  PubMed  Google Scholar 

Inoue A, Shen L, Dai Q, He C, Zhang Y. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 2011;21:1670–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inoue A, Zhang Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science. 2011;334:194.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tahiliani M, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ito S, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung KH, et al. Short-term exposure to PM2.5 and vanadium and changes in asthma gene DNA methylation and lung function decrements among urban children. Respir Res. 2017. https://doi.org/10.1186/s12931-017-0550-9.

Article  PubMed  PubMed Central  Google Scholar 

Gruzieva O, et al. Prenatal particulate air pollution and DNA methylation in newborns: an epigenome-wide meta-analysis. Environ Health Perspect. 2019;127:57012.

Article  PubMed  Google Scholar 

Plusquin M, et al. DNA methylome marks of exposure to particulate matter at three time points in early life. Environ Sci Technol. 2018;52:5427–37.

Article  CAS  PubMed  Google Scholar 

Clifford RL, et al. Inhalation of diesel exhaust and allergen alters human bronchial epithelium DNA methylation. J Allergy Clin Immunol. 2017;139:112–21.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif