Azaman SNA, Wong DCJ, Tan SW, Yusoff FM, Nagao N, Yeap SK (2020) De novo transcriptome analysis of Chlorella sorokiniana: effect of glucose assimilation, and moderate light intensity. Sci Rep 10:17331. https://doi.org/10.1038/s41598-020-74410-4
Article PubMed PubMed Central CAS Google Scholar
Ball SG (2002) The intricate pathway of Starch Biosynthesis and Degradation in the Monocellular Alga Chlamydomonas reinhardtii. Aust J Chem 55:49–59. https://doi.org/10.1071/ch02052
Banerjee S, Ray A, Das D (2021) Optimization of Chlamydomonas reinhardtii cultivation with simultaneous CO2 sequestration and biofuels production in a biorefinery framework. Sci Total Environ 762:143080. https://doi.org/10.1016/j.scitotenv.2020.143080
Article PubMed CAS Google Scholar
Biswas P, Das M, Boral S, Mukherjee G, Chaudhury K, Banerjee R (2020) Enzyme mediated resistant starch production from Indian Fox nut (Euryale ferox) and studies on digestibility and functional properties. Carbohydr Polym 237:116158. https://doi.org/10.1016/j.carbpol.2020.116158
Article PubMed CAS Google Scholar
Biswas P, Jayaseelan P, Das M, Sikder A, Chaudhury K, Banerjee R (2022) Processing of Semolina, a wonder resource for resistant starch production: in vitro digestibility and biochemical evaluation. Int J Biol Macromol 222:1918–1924. https://doi.org/10.1016/j.ijbiomac.2022.09.281
Article PubMed CAS Google Scholar
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099
Article PubMed CAS Google Scholar
Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108:766–776. https://doi.org/10.1002/bit.23016
Article PubMed CAS Google Scholar
Brennan L, Owende P (2010) Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577. https://doi.org/10.1016/j.rser.2009.10.009
Busi MV, Barchiesi J, Martín M, Gomez-Casati DF (2014) Starch metabolism in green algae. Starch - Stärke 66(1–2):28–40. https://doi.org/10.1002/star.201200211
Cao H, Wang J, Dong X, Han Y, Ma Q, Ding Y, Zhao F, Zhang J, Chen H, Xu Q, Xu J, Deng X (2015) Carotenoid accumulation affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in citrus. BMC Plant Biol 15:27. https://doi.org/10.1186/s12870-015-0426-4
Article PubMed PubMed Central CAS Google Scholar
Cheng D, Li D, Yuan Y, Zhou L, Li X, Wu T, Wang L, Zhao Q, Wei W, Sun Y (2017) Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnol Biofuels 10(1):75. https://doi.org/10.1186/s13068-017-0753-9
Chi C, He Y, Xiao X, Chen B, Zhou Y, Tan X, Ji Z, Zhang Y, Liu P (2023) A novel very small granular starch from Chlorella sp. MBFJNU-17. Int J Biol Macromol 225:557–564. https://doi.org/10.1016/j.ijbiomac.2022.11.111
Article PubMed CAS Google Scholar
Dauvillée D, Chochois V, Steup M, Haebel S, Eckermann N, Ritte G, Ral J-P, Colleoni C, Hicks G, Wattebled F, Deschamps P, D’Hulst C, Liénard L, Cournac L, Putaux J-L, Dupeyre D, Ball SG (2006) Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii. Plant J 48:274–285. https://doi.org/10.1111/j.1365-313X.2006.02870.x
Article PubMed CAS Google Scholar
de Medeiros VPB, de Souza EL, de Albuquerque TMR, da Costa Sassi CF, dos Santos Lima M, Sivieri K, Pimentel TC, Magnani M (2021) Freshwater microalgae biomasses exert a prebiotic effect on human colonic microbiota. Algal Res 60:102547. https://doi.org/10.1016/j.algal.2021.102547
DuBois Michel, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric Method for Determination of Sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017
Figueroa CM, Asencion Diez MD, Ballicora MA, Iglesias AA (2022) Structure, function, and evolution of plant ADP-glucose pyrophosphorylase. Plant Mol Biol 108:307–323. https://doi.org/10.1007/s11103-021-01235-8
Article PubMed CAS Google Scholar
Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412. https://doi.org/10.1093/jn/125.6.1401
Article PubMed CAS Google Scholar
Goren A, Ashlock D, Tetlow IJ (2018) Starch formation inside plastids of higher plants. Protoplasma 255:1855–1876. https://doi.org/10.1007/s00709-018-1259-4
Article PubMed CAS Google Scholar
Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci 54:1665–1669. https://doi.org/10.1073/pnas.54.6.1665
Article PubMed PubMed Central CAS Google Scholar
Gouda M, Tadda MA, Zhao Y, Farmanullah F, Chu B, Li X, He Y (2022) Microalgae Bioactive Carbohydrates as a Novel sustainable and eco-friendly source of Prebiotics: Emerging Health functionality and recent technologies for extraction and detection. Front Nutr 9:806692. https://doi.org/10.3389/fnut.2022.806692
Article PubMed PubMed Central CAS Google Scholar
Gu J, Zhou Z, Li Z, Chen Y, Wang Z, Zhang H (2017) Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crops Res 200:58–70. https://doi.org/10.1016/j.fcr.2016.10.008
Hinder RA, Kelly KA (1977) Canine gastric emptying of solids and liquids. Am J Physiol-Endocrinol Metab 233:E335. https://doi.org/10.1152/ajpendo.1977.233.4.E335
Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a New Appraisal. Mitig Adapt Strateg Glob Change 12:573–608. https://doi.org/10.1007/s11027-006-7304-1
Ihemere U, Arias-Garzon D, Lawrence S, Sayre R (2006) Genetic modification of cassava for enhanced starch production. Plant Biotechnol J 4:453–465. https://doi.org/10.1111/j.1467-7652.2006.00195.x
Article PubMed CAS Google Scholar
James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Current Opinion in Plant Biology 6(3):215–222. https://doi.org/10.1016/S1369-5266(03)00042-6
Jeon J-S, Ryoo N, Hahn T-R, Walia H, Nakamura Y (2010) Starch biosynthesis in cereal endosperm. Plant Physiol Biochem 48:383–392. https://doi.org/10.1016/j.plaphy.2010.03.006
Article PubMed CAS Google Scholar
Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:36. https://doi.org/10.1186/s12934-018-0879-x
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. https://doi.org/10.1107/S0021889892009944
Li N, Zhang S, Zhao Y, Li B, Zhang J (2011) Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta 233:241–250. https://doi.org/10.1007/s00425-010-1296-5
Article PubMed CAS Google Scholar
Lichtenthaler HK (1987) [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In: Methods in Enzymology. Academic Press, pp 350–382
Liu Y, Fang Y, Huang M, Jin Y, Sun J, Tao X, Zhang G, He K, Zhao Y, Zhao H (2015) Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk. Biotechnol Biofuels 8:64. https://doi.org/10.1186/s13068-015-0245-8
Article PubMed PubMed Central CAS Google Scholar
MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ (2017) Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J Exp Bot 68:4433–4453.
Comments (0)