Acuña JJ, Campos M, de la Luz Mora M, Jaisi DP, Jorquera MA (2019) ACCD-producing rhizobacteria from an Andean Altiplano native plant (Parastrephia quadrangularis) and their potential to alleviate salt stress in wheat seedlings. Appl Soil Ecol 136:184–190. https://doi.org/10.1016/j.apsoil.2019.01.005
Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242. https://doi.org/10.1016/j.chemosphere.2014.06.078
Article CAS PubMed Google Scholar
Afzal I, Iqrar I, Shinwari ZK, Yasmin A (2017) Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. Plant Growth Regul 81:399–408. https://doi.org/10.1007/s10725-016-0216-5
Agresti A (2012) Categorical data analysis. 3rd Edition. John Wiley & Sons, Florida
Ahn E, Kang H (2018) Introduction to systematic review and meta-analysis. Korean J Anesthesiol 71(2):103–112. https://doi.org/10.4097/kjae.2018.71.2.103
Article PubMed PubMed Central Google Scholar
Aloo BN, Mbega ER, Makumba BA, Hertel R, Daniel R (2021) Molecular identification and in vitro plant growth-promoting activities of culturable potato (Solanum tuberosum L.) rhizobacteria in Tanzania. Potato Res 64(1):67–95. https://doi.org/10.1007/s11540-020-09465-x
Bahmani K, Hasanzadeh N, Harighi B, Marefat A (2021) Isolation and identification of endophytic bacteria from potato tissues and their effects as biological control agents against bacterial wilt. Physiol Mol Plant Pathol 116:101692. https://doi.org/10.1016/j.pmpp.2021.101692
Bakelli A, Amrani S, Bouri M, Kalayci S, Sahin F (2022) Endophytic bacteria of common Tamarisk (Tamarix gallica l.) and Alkali seepweed (Suaeda fruticosa (l.) forssk.) as potential biocontrol and plant growth-promoting agents in arid environments. Appl Ecol Environ Res 20(4):3073–3098. https://doi.org/10.15666/aeer/2004_30733098
Banik A, Mukhopadhaya SK, Dangar TK (2016) Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta 243(3):799–812. https://doi.org/10.1007/s00425-015-2444-8
Article CAS PubMed Google Scholar
Barra PJ, Viscardi S, Jorquera MA, Duran PA, Valentine AJ, Mora M, de la L (2018) Understanding the strategies to overcome phosphorus-deficiency and aluminum-toxicity by ryegrass endophytic and rhizosphere phosphobacteria. Front Microbiol 9:1155. https://doi.org/10.3389/fmicb.2018.01155
Article PubMed PubMed Central Google Scholar
Biswas S, Philip I, Jayaram S, Sarojini S (2023) Endophytic bacteria Klebsiella spp. And Bacillus spp. From Alternanthera philoxeroides in Madiwala lake exhibit additive plant growth-promoting And biocontrol activities. J Genet Eng Biotechnol 21:153. https://doi.org/10.1186/s43141-023-00620-8
Article PubMed PubMed Central Google Scholar
Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2009) Introduction to meta-analysis. Wiley, UK
Catalán-Nájera JC, Garza-Ramos U, Barrios-Camacho H (2017) Hypervirulence and hypermucoviscosity: two different but complementary Klebsiella spp. phenotypes? Virulence 8(7):1111–1123. https://doi.org/10.1080/21505594.2017.1317412
Cen X, Li H, Zhang Y, Huang L, Luo Y (2024) Isolation and plant growth promotion effect of endophytic siderophore-producing bacteria: A study on halophyte Sesuvium portulacastrum. Plants 13:2703. https://doi.org/10.3390/plants13192703
Article CAS PubMed PubMed Central Google Scholar
Dantur KI, Chalfoun NR, Claps MP, Tórtora ML, Silva C, Jure Á, Porcel N, Bianco MI, Vojnov A, Castagnaro AP, Welin B (2018) The endophytic strain Klebsiella Michiganensis Kd70 lacks pathogenic island-like regions in its genome and is incapable of infecting the urinary tract in mice. Front Microbiol 9:1548. https://doi.org/10.3389/fmicb.2018.01548
Article PubMed PubMed Central Google Scholar
Das SR, Haque MA, Akbor MA, Abdullah-Al-Mamun M, Debnath GC, Hossain MS, Hasan Z, Rahman A, Islam MA, Hossain MAA, Yesmin S, Nahar MNEN, Cho KM (2022) Organophosphorus insecticides mineralizing endophytic and rhizospheric soil bacterial consortium influence eggplant growth-promotion. Arch Microbiol 204(3):199. https://doi.org/10.1007/s00203-022-02809-w
Article CAS PubMed Google Scholar
de la Vega-Camarillo E, Sotelo-Aguilar J, Rios-Galicia B, Mercado-Flores Y, Arteaga-Garibay R, Villa-Tanaca L, Hernández-Rodríguez C (2023) Promotion of the growth and yield of Zea mays by synthetic microbial communities from Jala maize. Front Microbiol 14:1167839. https://doi.org/10.3389/fmicb.2023.1167839
Article PubMed PubMed Central Google Scholar
Dhungana SA, Itoh K (2019) Effects of co-inoculation of indole-3-acetic acid-producing and-degrading bacterial endophytes on plant growth. Horticult 5(1):17. https://doi.org/10.3390/horticulturae5010017
Dinango VN, Dhouib H, Wakam LN, Kouokap LK, Youmbi DY, Eke P, Driss F, TounsiS, BoyomFF, Frikha-Gargouri O (2024) Bacterial endophytes inhabiting desert plants provide protection against seed rot caused by Fusarium verticillioides and promote growth in maize. Pest Manag Sci 80(3):1206–1218. https://doi.org/10.1002/ps.7850
Article CAS PubMed Google Scholar
Dong N, Yang X, Chan EWC, Zhang R, Chen S (2022) Klebsiella species: taxonomy, hypervirulence and multidrug resistance. EBioMedicine 79:103998. https://doi.org/10.1016/j.ebiom.2022.103998
Article CAS PubMed PubMed Central Google Scholar
Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek J Microbiol 106:85–125. https://doi.org/10.1007/s10482-013-0095-y
Article CAS PubMed Google Scholar
Durán P, Acuña JJ, Jorquera MA, Azcón R, Paredes C, Rengel Z, de la Luz MM (2014) Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces Graminis biocontrol in wheat production. Biol Fertil Soils 50(6):983–990. https://doi.org/10.1007/s00374-014-0920-0
Duran-Bedolla J, Garza-Ramos U, Rodríguez-Medina N, Aguilar Vera A, Barrios-Camacho H (2021) Exploring the environmental traits and applications of Klebsiella variicola. Braz J Microbiol 52(4):2233–2245. https://doi.org/10.1007/s42770-021-00630-z. GmbH
Article CAS PubMed PubMed Central Google Scholar
Dutta P, Karmakar A, Majumdar S, Roy S (2018) Klebsiella pneumoniae (HR1) assisted alleviation of Cd(II) toxicity in Vigna mungo: a case study of biosorption of heavy metal by an endophytic bacterium coupled with plant growth promotion. Euro-Mediterr J Environ Integr 3(1):27. https://doi.org/10.1007/s41207-018-0069-6
Eid AM, Fouda A, Abdel-Rahman MA, Salem SS, Elsaied A, Oelmüller R, Hijri M, Bhowmik A, Elkelish A, Hassan SE (2021) Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: an overview. Plants (Basel) 10:935. https://doi.org/10.3390/plants10050935
Article CAS PubMed Google Scholar
Eke P, Kumar A, Sahu KP, Wakam LN, Sheoran N, Ashajyothi M, Patel A, Fekam FB (2019) Endophytic bacteria of desert cactus (Euphorbia Trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L). Microbiol Res 228:126302. https://doi.org/10.1016/j.micres.2019.126302
Article CAS PubMed Google Scholar
Ferreira SC, Nakasone AK, Nascimento SMC, Oliveira DA, Siqueira AS, Cunha EFM, Castro GLS, de Souza CRB (2021) Isolation and characterization of cassava root endophytic bacteria with the ability to promote plant growth and control the in vitro and in vivo growth of Phytopythium Sp. Physiol Mol Plant Pathol 116:101709. https://doi.org/10.1016/j.pmpp.2021.101709
Ferreira SC, Nakasone AK, Cunha EFM, Serrão CP, de Souza CRB (2024) Klebsiella endophytic bacteria control cassava bacterial blight in the Eastern Amazon. Acta Amaz 54:e54ag23160. https://doi.org/10.1590/1809-4392202301601
Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LFW, Krogfelt KA, Struve C, Triplett EW, Methé BA (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4(7):e1000141. https://doi.org/10.1371/journal.pgen.1000141
Comments (0)