Abbas S, Zulfiqar S, Arshad M, Khalid N, Hussain A, Ahmed I (2025) Molecular characterization of heavy metal-tolerant bacteria and their potential for bioremediation and plant growth promotion. Front Microbiol 16:1644466. https://doi.org/10.3389/fmicb.2025.1644466
Article PubMed PubMed Central Google Scholar
Al-Ansari MM, Benabdelkamel H, AlMalki RH, Rahman AMA, Alnahmi E, Masood A, Ilavenil S, Choi KC (2021) Effective removal of heavy metals from industrial effluent wastewater by a multi metal and drug resistant Pseudomonas aeruginosa strain RA-14 using integrated sequencing batch reactor. Environ Res 199:111240. https://doi.org/10.1016/j.envres.2021.111240
Article CAS PubMed Google Scholar
Al-Muttairi AK, Al-Mayaly IK (2023) The potential efficiency of Bacillus subtilis AIK to remove nickel from aqueous solutions. Iraqi J Sci 3859–3866. https://doi.org/10.24996/ijs.2023.64.8.13
Aslam F, Yasmin A, Sohail S (2020) Bioaccumulation of lead, chromium, and nickel by bacteria from three different genera isolated from industrial effluent. Int Microbiol 23(2):253–261. https://doi.org/10.1007/s10123-019-00098-w
Article CAS PubMed Google Scholar
Bisht H, Kumar N (2022) Plant & microbe mediated bioremediation: A long-term remedy for heavy metal pollution. Asia-Pac J Mol Biol Biotechnol 30(3):69–90. https://doi.org/10.3390/ijerph14121504
Bisht H, Kumar N (2023a) Characterization and evaluation of the Nickel-Removal capacity of Kluyvera cryocrescens M7 isolated from industrial wastes. Pollut 9(3):1059–1073. https://doi.org/10.22059/poll.2023.347580.1586
Bisht H, Kumar N (2023b) Identification and characterization of aluminium tolerant bacteria isolated from soil contaminated by electroplating and automobile waste. Nat Environ Pollut Technol 22(1):411–416. https://doi.org/10.46488/NEPT.2023.v22i01.039
Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46(3):237–245. https://doi.org/10.1139/w99-143
Article CAS PubMed Google Scholar
Chen J, Li N, Han S, Sun Y, Wang L, Qu Z, Zhao G (2020) Characterization and bioremediation potential of nickel-resistant endophytic bacteria isolated from the wetland plant tamarix chinensis. FEMS Microbiol Lett 367(12):fnaa098. https://doi.org/10.1093/femsle/fnaa098
Article CAS PubMed Google Scholar
Chintalpudi VK, Kanamarlapudi RKSL, Mallu UR, Muddada S (2021) Isolation, identification, biosorption optimization, characterization, isotherm, kinetic and application of novel bacterium Chelatococcus sp. biomass for removal of Pb (II) ions from aqueous solutions. Int J Environ Sci Technol 1–14. https://doi.org/10.1007/s13762-021-03169-6
Cufaoglu G, Cengiz G, Onaran Acar B, Yesilkaya B, Ayaz ND, Levent G, Goncuoglu M (2022) Antibiotic, heavy metal, and disinfectant resistance in chicken, cattle, and sheep origin E. coli and whole-genome sequencing analysis of a multidrug‐resistant E. coli O100: H25 strain. J Food Saf 42(5):e12995. https://doi.org/10.1111/jfs.12995
Diep P, Mahadevan R, Yakunin AF (2018) Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 6:157. https://doi.org/10.3389/fbioe.2018.00157
Article PubMed PubMed Central Google Scholar
Diep P, Leo Shen H, Wiesner JA, Mykytczuk N, Papangelakis V, Yakunin AF, Mahadevan R (2023) Engineered nickel bioaccumulation in Escherichia coli by NikABCDE transporter and metallothionein overexpression. Eng Life Sci 23(7):2200133. https://doi.org/10.1002/elsc.202200133
Article CAS PubMed PubMed Central Google Scholar
Duprey A, Chansavang V, Frémion F, Gonthier C, Louis Y, Lejeune P, Dorel C (2014) NiCo buster: engineering E. coli for fast and efficient capture of cobalt and nickel. J Biol Eng 8(1):19. https://doi.org/10.1186/1754-1611-8-19
Article CAS PubMed PubMed Central Google Scholar
El-Bestawy E, Abou El-KHeir E, Abd El-Fatah HI, Hassouna SM (1998) Enhancement of bacterial efficiency for metal removal using mutation techniques. World J Microbiol Biotechnol 14:853–856. https://doi.org/10.1023/A:1008827830024
Furlan JPR, Ramos MS, da Silva Rosa R, Savazzi EA, Stehling EG (2022) Occurrence and genetic characteristics of multidrug-resistant Escherichia coli isolates co-harboring antimicrobial resistance genes and metal tolerance genes in aquatic ecosystems. Int J Hyg Environ Health 244:114003. https://doi.org/10.1016/j.ijheh.2022.114003
Article CAS PubMed Google Scholar
Gao LL, Lu YC, Zhang JL, Li J, Zhang JD (2019) Biotreatment of restaurant wastewater with an oily high concentration by newly isolated bacteria from oily sludge. World J Microbiol Biotechnol 35:1–11
Gumuscu B, Cekmecelioglu D, Tekinay T (2015) Complete dissipation of 2, 4, 6-trinitrotoluene by in-vessel composting. RSC Adv 5(64):51812–51819. https://doi.org/10.1039/C5RA07997G
Heidari P, Sanaeizade S, Mazloomi F (2020) Removal of nickel, copper, lead and cadmium by new strains of sphingomonas Melonis e8 and Enterobacter hormaechei WW28. J Appl Biotechnol Rep 7(4):208–214. https://doi.org/10.30491/jabr.2020.120185
Huang J, Wang J, Jia L (2020) Removal of zinc (II) from livestock and poultry sewage by a zinc (II) resistant-bacteria. Sci Rep 10(1):1–13. https://doi.org/10.1038/s41598-020-78138-z
Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Cao X (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46(4):406–433. https://doi.org/10.1080/10643389.2015.1096880
Jeevaraj T, Balakrishnan I, Arockiya AM (2022) Preliminary investigation on multi metal tolerance of Bacillus thuringiensis isolated from industrial effluent soil. Acta Ecol Sin 42(6):684–692. https://doi.org/10.1016/j.chnaes.2021.04.005
Karn SK, Raj S, Khatkar N (2018) Transformation and stabilization of lead and chromium using Aspergillus sp. and Bio-charcoal amendment. Health Scope 7(3). https://doi.org/10.5812/jhealthscope.79962
Karn SK, Bhambri A, Rawat D (2023) Development of lead (Pb) tolerant strain by protoplast technology and their remediation. World J Microbiol Biotechnol 39(10):274. https://doi.org/10.1007/s11274-023-03711-3
Article CAS PubMed Google Scholar
Kashyap S, Chandra R, Kumar B, Verma P (2022) Biosorption efficiency of nickel by various endophytic bacterial strains for removal of nickel from electroplating industry effluents: an operational study. Ecotoxicology 31(4):565–580. https://doi.org/10.1007/s10646-021-02445-y
Article CAS PubMed Google Scholar
Kim W, Kim D, Back S, Lee YS, Abari AH, Kim J (2019) Removal of Ni2 + and Cd2+ by surface display of polyhistidine on Bacillus subtilis spore using CotE anchor protein. Biotechnol Bioprocess Eng 24(2):375–381. https://doi.org/10.1007/s12257-018-0467-2
Kumar S, Wang M, Liu Y, Fahad S, Qayyum A, Jadoon SA, Zhu G (2022) Nickel toxicity alters growth patterns and induces oxidative stress response in sweetpotato. Front Plant Sci 13:1054924. https://doi.org/10.3389/fpls.2022.1054924
Article PubMed PubMed Central Google Scholar
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nat 227(5259):680–685. https://doi.org/10.1038/227680a0
Lubal MJ (2024) Impact of heavy metal pollution on the environment. UTTAR PRADESH JOURNAL OF ZOOLOGY 45(11):97–105. https://doi.org/10.56557/upjoz/2024/v45i114074
Masoumi F, Khadivinia E, Alidoust L, Mansourinejad Z, Shahryari S, Safaei M, Mousavi A, Salmanian AH, Zahiri HS, Vali H, Noghabi KA (2016) Nickel and lead biosorption by curtobacterium sp. FM01, an indigenous bacterium isolated from farmland soils of Northeast Iran. J Environ Chem Eng 4(1):950–957. https://doi.org/10.1016/j.jece.2015.12.025
Mitra S, Dey J, Sarkar S, Banik P (2025) Halotolerant bacteria isolated from the soils of Indian Mangrove ecosystem for metal removal and NPK enhancement. Sci Rep 15(1):20804. https://doi.org/10.1038/s41598-025-07839-0
Article PubMed PubMed Central Google Scholar
Muslim OA, Bakr HM, Jwaziri AK, Ali KMR (2024) Removal of toxic heavy metals using genetically engineered microbes: molecular Tools, risk Assessment, and management strategies. Acad Open 9(2):10–21070. https://doi.org/10.21070/acopen.9.2024.10300
Comments (0)