BacteriumBiological characteristics and oxidation performance of a new manganese-oxidizing bacteria:

Baazeem A, Alotaibi SS, Khalaf LK et al (2022) Identification and environment-friendly biocontrol potential of five different bacteria against aphis punicae and aphis illinoisensis (Hemiptera: Aphididae). Front Microbiol 13:961349. https://doi.org/10.3389/fmicb.2022.961349

Article  PubMed  PubMed Central  Google Scholar 

Butterfield CN, Tebo BM (2017) Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12. Metallomics 9(2):183–191. https://doi.org/10.1039/c6mt00239k

Article  CAS  PubMed  Google Scholar 

Caspi R, Haygood MG, Tebo BM (1996) Unusual ribulose-1,5-bisphosphate carboxylase/oxygenase genes from a marine manganese-oxidizing bacterium. Microbiology (Reading) 142(Pt 9):2549–2559. https://doi.org/10.1099/00221287-142-9-2549

Article  CAS  PubMed  Google Scholar 

Chen S-Y, Lin P-L (2010) Optimization of operating parameters for the metal bioleaching process of contaminated soil. Sep Purif Technol 71(2):178–185. https://doi.org/10.1016/j.seppur.2009.11.018

Article  CAS  Google Scholar 

Cheng Q, Tian H, Guo X et al (2023) Advanced synergetic nitrogen removal of municipal wastewater using oxidation products of refractory organic matters in secondary effluent by biogenic manganese oxides as carbon source. Water Res 241:120163. https://doi.org/10.1016/j.watres.2023.120163

Article  CAS  PubMed  Google Scholar 

Ciancio Casalini L, Piazza A, Masotti F et al (2022) Manganese oxidation counteracts the deleterious effect of low temperatures on biofilm formation in Pseudomonas sp. MOB-449. Front Mol Biosci 9:1015582. https://doi.org/10.3389/fmolb.2022.1015582

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daye M, Klepac-Ceraj V, Pajusalu M et al (2019) Light-driven anaerobic microbial oxidation of manganese. Nature 576(7786):311–314. https://doi.org/10.1038/s41586-019-1804-0

Article  CAS  PubMed  Google Scholar 

Hosseinkhani B, Emtiazi G (2011) Synthesis and characterization of a novel extracellular biogenic manganese oxide (bixbyite-like Mn₂O₃) nanoparticle by isolated acinetobacter Sp. Curr Microbiol 63(3):300–305. https://doi.org/10.1007/s00284-011-9971-8

Article  CAS  PubMed  Google Scholar 

Jia L, Zhou Q, Li Y et al (2023) Application of manganese oxides in wastewater treatment: biogeochemical Mn cycling driven by bacteria. Chemosphere 336:139219. https://doi.org/10.1016/j.chemosphere.2023.139219

Article  CAS  PubMed  Google Scholar 

Jofré I, Matus F, Mendoza D et al (2021) Manganese-Oxidizing Antarctic bacteria (Mn-Oxb) release reactive oxygen species (ROS) as secondary Mn(II) oxidation mechanisms to avoid toxicity. Biology. https://doi.org/10.3390/biology10101004

Article  PubMed  PubMed Central  Google Scholar 

Kim JG, Dixon JB, Chusuei CC et al (2002) Oxidation of chromium(III) to (VI) by manganese oxides. Soil Sci Soc Am J 66:306–315. https://doi.org/10.2136/sssaj2002.3060

Article  CAS  Google Scholar 

Krumbein WE, Altmann HJ (1973) A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms. Helgol Wiss Meeresunters. https://doi.org/10.1007/BF01611203

Article  Google Scholar 

Kumar R, Wyman CE (2009) Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol Bioeng 103(2):252–267. https://doi.org/10.1002/bit.22258

Article  CAS  PubMed  Google Scholar 

Learman D, Voelker B, Vazquez-Rodriguez A et al (2011) Formation of manganese oxides by bacterially generated superoxide. Nat Geosci 4:95–98. https://doi.org/10.1038/Ngeo1055

Article  CAS  Google Scholar 

Li D, Yang T, Zhou R et al (2023) Assessment and sources of heavy metals in the suspended particulate matter, sediments and water of a karst lake in Guizhou province, China. Mar Pollut Bull 189:114636. https://doi.org/10.1016/j.marpolbul.2023.114636

Article  CAS  PubMed  Google Scholar 

Li Q, Shi M, Liao Q et al (2024) Molecular response to the influences of Cu(II) and Fe(III) on forming biogenic manganese oxides by Pseudomonas putida MnB1. J Hazard Mater 477:135298. https://doi.org/10.1016/j.jhazmat.2024.135298

Article  CAS  PubMed  Google Scholar 

Long D, Tang X, Cai K et al (2013) Cr(VI) reduction by a potent novel alkaliphilic halotolerant strain pseudochrobactrum saccharolyticum LY10. J Hazard Mater 256:24–32. https://doi.org/10.1016/j.jhazmat.2013.04.020

Article  CAS  PubMed  Google Scholar 

Lu J, Liu H, Zhao X et al (2014) Phosphate removal from water using freshly formed Fe–Mn binary oxide: adsorption behaviors and mechanisms. Colloids Surf A Physicochem Eng Asp 455:11–18. https://doi.org/10.1016/j.colsurfa.2014.04.034

Article  CAS  Google Scholar 

Lu A, li y, Liu F et al (2021) The photogeochemical cycle of Mn oxides on earth’s surface. Mineral Mag 85:1–57. https://doi.org/10.1180/mgm.2021.10

Article  CAS  Google Scholar 

Matsushita S, Komizo D, Cao LTT et al (2018) Production of biogenic manganese oxides coupled with methane oxidation in a bioreactor for removing metals from wastewater. Water Res 130:224–233. https://doi.org/10.1016/j.watres.2017.11.063

Article  CAS  PubMed  Google Scholar 

Mengke L, Yuting Z, Yuting H et al (2019) Exploration on the bioreduction mechanism of Cr(VI) by a gram-positive bacterium: pseudochrobactrum saccharolyticum W1. Ecotoxicology and environmental safety. 184:109636. https://doi.org/10.1016/j.ecoenv.2019.109636

Miletto M, Wang, Planavsky N et al (2021) Marine microbial Mn(II) oxidation mediates Cr(III) oxidation and isotope fractionation. Geochim Cosmochim Acta 297:101–119. https://doi.org/10.1016/j.gca.2021.01.008

Article  CAS  Google Scholar 

Mishra S, Dubey P, Naseem M et al (2024) A kinetic modelling approach to explore mechanism of Cr(VI) detoxification by a novel strain pseudochrobactrum saccharolyticum NBRI-CRB 13 using response surface methodology. World J Microbiol Biotechnol 40(10):288. https://doi.org/10.1007/s11274-024-04099-4

Article  CAS  PubMed  Google Scholar 

Mo W, Wang H, Wang J et al (2024) Advances in research on bacterial oxidation of Mn(II): a visualized bibliometric analysis based on citespace. Microorganisms. https://doi.org/10.3390/microorganisms12081611

Article  PubMed  PubMed Central  Google Scholar 

Shen JP, Zhang LM, Di HJ et al (2012) A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Front Microbiol 3:296. https://doi.org/10.3389/fmicb.2012.00296

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sockalingum GD, Bouhedja W, Pina P et al (1997) ATR-FTIR spectroscopic investigation of imipenem-susceptible and -resistant Pseudomonas aeruginosa isogenic strains. Biochem Biophys Res Commun 232(1):240–246. https://doi.org/10.1006/bbrc.1997.6263

Article  CAS  PubMed  Google Scholar 

Song Z, Ma YL, Li CE (2019) The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO(2)/graphene nanocomposite. Sci Total Environ 651:580–590. https://doi.org/10.1016/j.scitotenv.2018.09.240

Article  CAS  PubMed  Google Scholar 

Su J (2015) Research on the mechanism of bacterial manganese oxide and the characteristics of biological manganese oxides[D]. Huazhong Agricultural University. https://doi.org/10.7666/d.Y3053382

Sunda W, Kieber D (1994) Oxidation of humic substances by manganese oxides yields low molecular-weight substrates. Nature 367:62–64. https://doi.org/10.1038/367062a0

Article  CAS  Google Scholar 

Tang W, Huang Z, Liu Y et al (2025) Effect of Cu(II) and conserved copper binding sites on the multicopper oxidase CopA and characterization of BioMnO (x). Proteins 93(2):515–526. https://doi.org/10.1002/prot.26744

Article  CAS  PubMed  Google Scholar 

Tebo B, Ghiorse W, Waasbergen LG et al (1997) Bacterially mediated mineral formation; insights into manganese (II) oxidation from molecular genetics and biochemical studies. Rew’ews Mineralogy Geochem 35:225–266

CAS 

Comments (0)

No login
gif