Atichartpongkul S et al (2001) Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression. Microbiology-Sgm 147:1775–1782. https://doi.org/10.1099/00221287-147-7-1775
Barreiro C et al (2009) Microarray studies reveal a ‘differential response’ to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum. Microbiology-Sgm 155:359–372. https://doi.org/10.1099/mic.0.019299-0
Beckers G et al (2001) Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. Microbiology 147(11):2961–2970. https://doi.org/10.1099/00221287-147-11-2961
Brownpeterson NJ, Salin ML (1995) Purification and characterization of a mesohalic catalase from the halophilic bacterium. Halobacterium halobium J Bacteriol 177(2):378–384. https://doi.org/10.1128/jb.177.2.378-384.1995
Article CAS PubMed Google Scholar
Brune I et al (2006) The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. BMC Genomics 7(1):1–19. https://doi.org/10.1186/1471-2164-7-21
Bryk R et al (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407(6801):211–215. https://doi.org/10.1038/35025109
Article CAS PubMed Google Scholar
Bryukhanov A et al (2022) Antioxidant properties of lactic acid bacteria. Microbiology 91(5):463–478. https://doi.org/10.1134/S0026261722601439
Burgardt A et al (2021) Coenzyme Q10 Biosynthesis established in the Non-ubiquinone Containing Corynebacterium glutamicum by Metabolic Engineering. Front Bioeng Biotechnol 9. https://doi.org/10.3389/fbioe.2021.650961
Busche T et al (2012) Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genom 13. https://doi.org/10.1186/1471-2164-13-445
Bussmann M et al (2010) RosR (Cg1324), a hydrogen peroxide-sensitive MarR-type transcriptional regulator of Corynebacterium glutamicum. J Biol Chem 285(38):29305–29318. https://doi.org/10.1074/jbc.M110.156372
Cao F et al (2023) Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nat Nanotechnol 18(6):617–. https://doi.org/10.1038/s41565-023-01346-x
Article CAS PubMed Google Scholar
Chagas RF et al (2010) Purification of Paracoccidioides brasiliensis catalase P: subsequent kinetic and stability studies. J BioChem 147(3):345–351. https://doi.org/10.1093/jb/mvp182
Article CAS PubMed Google Scholar
Che C et al (2020) Thioredoxin and protein-disulfide isomerase selectivity for redox regulation of proteins in Corynebacterium glutamicum. J Gen Appl Microbiol 66(5):245–255. https://doi.org/10.2323/jgam.2019.09.002
Article CAS PubMed Google Scholar
Chen KY et al (2021) Involvement of a mycothiol-dependent reductase NCgl0018 in oxidative stress response of Corynebacterium glutamicum. J Gen Appl Microbiol 67(6):225–239. https://doi.org/10.2323/jgam.2021.03.005
Article CAS PubMed Google Scholar
Choi W-W et al (2009) The whcA gene plays a negative role in oxidative stress response of Corynebacterium glutamicum. FEMS Microbiol Lett 290(1):32–38. https://doi.org/10.1111/j.1574-6968.2008.01398.x
Article CAS PubMed Google Scholar
Crack JC et al (2012) Bacterial iron–sulfur regulatory proteins as biological sensor-switches. Antioxid Redox Signal 17(9):1215–1231. https://doi.org/10.1089/ars.2012.4511
Cussiol JRR et al (2010) Ohr (Organic Hydroperoxide resistance protein) possesses a previously undescribed activity, lipoyl-dependent peroxidase. J Biol Chem 285(29):21943–21950. https://doi.org/10.1074/jbc.M110.117283
Article CAS PubMed PubMed Central Google Scholar
de Jager TL et al (2017) Ultraviolet Light Induced Generation of reactive oxygen species. Adv Exp Med Biol 996:15–23. https://doi.org/10.1007/978-3-319-56017-5_2
Article CAS PubMed Google Scholar
de Kok A et al (1998) The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria. Biochim Et Biophys Acta-Protein Struct Mol Enzymol 1385(2):353–366. https://doi.org/10.1016/s0167-4838(98)00079-x
Du H et al (2019) Effects of methanol on carotenoids as well as biomass and fatty acid biosynthesis in Schizochytrium Limacinum B4D1. Appl Environ Microbiol 85(19):e01243–e01219. https://doi.org/10.1128/AEM.01243-19
Article CAS PubMed PubMed Central Google Scholar
Du H et al (2023) Balancing Redox Homeostasis to improve l-Cysteine production in Corynebacterium glutamicum. J Agric Food Chem 71(37):13848–13856. https://doi.org/10.1021/acs.jafc.3c03828
Article CAS PubMed Google Scholar
Dubbs JM, Mongkolsuk S (2007) Peroxiredoxins in bacterial antioxidant defense. Peroxiredoxin Systems: Struct Funct 143–193. https://doi.org/10.1007/978-1-4020-6051-9_7
Dussert E et al (2022) Evaluation of antiradical and antioxidant activities of lipopeptides produced by Bacillus subtilis strains. Front Microbiol 13:914713. https://doi.org/10.3389/fmicb.2022.914713
Article PubMed PubMed Central Google Scholar
Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99(8):3387–3394. https://doi.org/10.1007/s00253-015-6508-2
Article CAS PubMed Google Scholar
Ehira S et al (2008) Group 2 sigma factor sigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl Environ Microbiol 74(16):5146–5152. https://doi.org/10.1128/aem.00944-08
Article CAS PubMed PubMed Central Google Scholar
Ehira S et al (2009) Regulation of quinone oxidoreductase by the redox-sensing transcriptional regulator QorR in Corynebacterium glutamicum. J Biol Chem 284(25):16736–16742. https://doi.org/10.1074/jbc.M109.009027
Ehira S et al (2010) A novel redox-sensing transcriptional regulator CyeR controls expression of an old yellow enzyme family protein in Corynebacterium glutamicum. Microbiology-Sgm 156:1335–1341. https://doi.org/10.1099/mic.0.036913-0
Fridovich I (1997) Superoxide anion radical (O-2 radical anion), superoxide dismutases, and related matters. J Biol Chem 272(30):18515–18517. https://doi.org/10.1074/jbc.272.30.18515
Article CAS PubMed Google Scholar
Frunzke J et al (2011) Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. J Bacteriol 193(5):1212–1221. https://doi.org/10.1128/jb.01130-10
Gasyna Z (1975) Structure and functions of catalase (author’s transl). Postepy Biochem 21(2):175–191
Goldbeck O et al (2018) Real time monitoring of NADPH concentrations in Corynebacterium glutamicum and Escherichia coli via the genetically encoded Sensor mBFP. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.02564
Greenberg JT et al (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proceedings of the National Academy of Sciences 87(16): 6181–6185.https://doi.org/10.1073/pnas.87.16.6181
Grkovic S et al (2002) Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66(4):671–. https://doi.org/10.1128/mmbr.66.4.671-701.2002
Article CAS PubMed PubMed Central Google Scholar
Hall A et al (2009) Typical 2-Cys peroxiredoxins - structures, mechanisms and functions. FEBS J 276(9):2469–2477. https://doi.org/10.1111/j.1742-4658.2009.06985.x
Article CAS PubMed PubMed Central Google Scholar
Hartmann FSF et al (2020) The industrial organism Corynebacterium glutamicum requires mycothiol as antioxidant to resist against oxidative stress in bioreactor cultivations. Antioxidants 9(10):969. https://doi.org/10.3390/antiox9100969
Article CAS PubMed PubMed Central Google Scholar
Hartmann FSF et al (2022) Combined sensor-based monitoring of Mycothiol redox potential and DNA-damage response in Corynebacterium glutamicum. bioRxiv: 2022.2007. https://doi.org/10.1101/2022.07.25.501298
Hashemy SI, Holmgren A (2008) Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues. J Biol Chem 283(32):21890–21898. https://doi.org/10.1074/jbc.M801047200
Comments (0)