Regulation of oxidative stress response and antioxidant modification in Corynebacterium glutamicum

Atichartpongkul S et al (2001) Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression. Microbiology-Sgm 147:1775–1782. https://doi.org/10.1099/00221287-147-7-1775

Article  CAS  Google Scholar 

Barreiro C et al (2009) Microarray studies reveal a ‘differential response’ to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum. Microbiology-Sgm 155:359–372. https://doi.org/10.1099/mic.0.019299-0

Article  Google Scholar 

Beckers G et al (2001) Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. Microbiology 147(11):2961–2970. https://doi.org/10.1099/00221287-147-11-2961

Brownpeterson NJ, Salin ML (1995) Purification and characterization of a mesohalic catalase from the halophilic bacterium. Halobacterium halobium J Bacteriol 177(2):378–384. https://doi.org/10.1128/jb.177.2.378-384.1995

Article  CAS  PubMed  Google Scholar 

Brune I et al (2006) The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. BMC Genomics 7(1):1–19. https://doi.org/10.1186/1471-2164-7-21

Article  CAS  Google Scholar 

Bryk R et al (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407(6801):211–215. https://doi.org/10.1038/35025109

Article  CAS  PubMed  Google Scholar 

Bryukhanov A et al (2022) Antioxidant properties of lactic acid bacteria. Microbiology 91(5):463–478. https://doi.org/10.1134/S0026261722601439

Article  CAS  Google Scholar 

Burgardt A et al (2021) Coenzyme Q10 Biosynthesis established in the Non-ubiquinone Containing Corynebacterium glutamicum by Metabolic Engineering. Front Bioeng Biotechnol 9. https://doi.org/10.3389/fbioe.2021.650961

Busche T et al (2012) Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genom 13. https://doi.org/10.1186/1471-2164-13-445

Bussmann M et al (2010) RosR (Cg1324), a hydrogen peroxide-sensitive MarR-type transcriptional regulator of Corynebacterium glutamicum. J Biol Chem 285(38):29305–29318. https://doi.org/10.1074/jbc.M110.156372

Cao F et al (2023) Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nat Nanotechnol 18(6):617–. https://doi.org/10.1038/s41565-023-01346-x

Article  CAS  PubMed  Google Scholar 

Chagas RF et al (2010) Purification of Paracoccidioides brasiliensis catalase P: subsequent kinetic and stability studies. J BioChem 147(3):345–351. https://doi.org/10.1093/jb/mvp182

Article  CAS  PubMed  Google Scholar 

Che C et al (2020) Thioredoxin and protein-disulfide isomerase selectivity for redox regulation of proteins in Corynebacterium glutamicum. J Gen Appl Microbiol 66(5):245–255. https://doi.org/10.2323/jgam.2019.09.002

Article  CAS  PubMed  Google Scholar 

Chen KY et al (2021) Involvement of a mycothiol-dependent reductase NCgl0018 in oxidative stress response of Corynebacterium glutamicum. J Gen Appl Microbiol 67(6):225–239. https://doi.org/10.2323/jgam.2021.03.005

Article  CAS  PubMed  Google Scholar 

Choi W-W et al (2009) The whcA gene plays a negative role in oxidative stress response of Corynebacterium glutamicum. FEMS Microbiol Lett 290(1):32–38. https://doi.org/10.1111/j.1574-6968.2008.01398.x

Article  CAS  PubMed  Google Scholar 

Crack JC et al (2012) Bacterial iron–sulfur regulatory proteins as biological sensor-switches. Antioxid Redox Signal 17(9):1215–1231. https://doi.org/10.1089/ars.2012.4511

Cussiol JRR et al (2010) Ohr (Organic Hydroperoxide resistance protein) possesses a previously undescribed activity, lipoyl-dependent peroxidase. J Biol Chem 285(29):21943–21950. https://doi.org/10.1074/jbc.M110.117283

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Jager TL et al (2017) Ultraviolet Light Induced Generation of reactive oxygen species. Adv Exp Med Biol 996:15–23. https://doi.org/10.1007/978-3-319-56017-5_2

Article  CAS  PubMed  Google Scholar 

de Kok A et al (1998) The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria. Biochim Et Biophys Acta-Protein Struct Mol Enzymol 1385(2):353–366. https://doi.org/10.1016/s0167-4838(98)00079-x

Article  Google Scholar 

Du H et al (2019) Effects of methanol on carotenoids as well as biomass and fatty acid biosynthesis in Schizochytrium Limacinum B4D1. Appl Environ Microbiol 85(19):e01243–e01219. https://doi.org/10.1128/AEM.01243-19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du H et al (2023) Balancing Redox Homeostasis to improve l-Cysteine production in Corynebacterium glutamicum. J Agric Food Chem 71(37):13848–13856. https://doi.org/10.1021/acs.jafc.3c03828

Article  CAS  PubMed  Google Scholar 

Dubbs JM, Mongkolsuk S (2007) Peroxiredoxins in bacterial antioxidant defense. Peroxiredoxin Systems: Struct Funct 143–193. https://doi.org/10.1007/978-1-4020-6051-9_7

Dussert E et al (2022) Evaluation of antiradical and antioxidant activities of lipopeptides produced by Bacillus subtilis strains. Front Microbiol 13:914713. https://doi.org/10.3389/fmicb.2022.914713

Article  PubMed  PubMed Central  Google Scholar 

Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99(8):3387–3394. https://doi.org/10.1007/s00253-015-6508-2

Article  CAS  PubMed  Google Scholar 

Ehira S et al (2008) Group 2 sigma factor sigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl Environ Microbiol 74(16):5146–5152. https://doi.org/10.1128/aem.00944-08

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehira S et al (2009) Regulation of quinone oxidoreductase by the redox-sensing transcriptional regulator QorR in Corynebacterium glutamicum. J Biol Chem 284(25):16736–16742. https://doi.org/10.1074/jbc.M109.009027

Ehira S et al (2010) A novel redox-sensing transcriptional regulator CyeR controls expression of an old yellow enzyme family protein in Corynebacterium glutamicum. Microbiology-Sgm 156:1335–1341. https://doi.org/10.1099/mic.0.036913-0

Article  CAS  Google Scholar 

Fridovich I (1997) Superoxide anion radical (O-2 radical anion), superoxide dismutases, and related matters. J Biol Chem 272(30):18515–18517. https://doi.org/10.1074/jbc.272.30.18515

Article  CAS  PubMed  Google Scholar 

Frunzke J et al (2011) Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. J Bacteriol 193(5):1212–1221. https://doi.org/10.1128/jb.01130-10

Gasyna Z (1975) Structure and functions of catalase (author’s transl). Postepy Biochem 21(2):175–191

CAS  PubMed  Google Scholar 

Goldbeck O et al (2018) Real time monitoring of NADPH concentrations in Corynebacterium glutamicum and Escherichia coli via the genetically encoded Sensor mBFP. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.02564

Article  Google Scholar 

Greenberg JT et al (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proceedings of the National Academy of Sciences 87(16): 6181–6185.https://doi.org/10.1073/pnas.87.16.6181

Grkovic S et al (2002) Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66(4):671–. https://doi.org/10.1128/mmbr.66.4.671-701.2002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall A et al (2009) Typical 2-Cys peroxiredoxins - structures, mechanisms and functions. FEBS J 276(9):2469–2477. https://doi.org/10.1111/j.1742-4658.2009.06985.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartmann FSF et al (2020) The industrial organism Corynebacterium glutamicum requires mycothiol as antioxidant to resist against oxidative stress in bioreactor cultivations. Antioxidants 9(10):969. https://doi.org/10.3390/antiox9100969

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartmann FSF et al (2022) Combined sensor-based monitoring of Mycothiol redox potential and DNA-damage response in Corynebacterium glutamicum. bioRxiv: 2022.2007. https://doi.org/10.1101/2022.07.25.501298

Hashemy SI, Holmgren A (2008) Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues. J Biol Chem 283(32):21890–21898. https://doi.org/10.1074/jbc.M801047200

Article 

Comments (0)

No login
gif